cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120274 Largest prime factor of the odd Catalan number A038003(n).

Original entry on oeis.org

5, 13, 29, 61, 113, 251, 509, 1021, 2039, 4093, 8179, 16381, 32749, 65521, 131063, 262139, 524269, 1048573, 2097143, 4194301, 8388593, 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, 1073741789, 2147483629
Offset: 2

Views

Author

Alexander Adamchuk, Jul 04 2006, Jul 13 2006, Jul 26 2006

Keywords

Comments

For n=6 a(n) differs from the largest prime factor of (2*(2^n-1))! = A028367[n].
A038003[n] = binomial(2^(n+1)-2, 2^n-1)/(2^n).
The numbers of distinct prime factors of the odd Catalan numbers A038003(n): 3, 6, 11, 20, 36, 64, 117, 209, 381, 699, 1291, 2387, 4445, 8317, 15645, 29494, ..., . - Robert G. Wilson v, May 11 2007

Examples

			a(2) = 5 because A038003[2] = 5.
a(3) = 13 because A038003[3] = 429 = 3*11*13.
		

Crossrefs

Programs

  • Mathematica
    (* first do *) Needs["DiscreteMath`CombinatorialFunctions`"] (* then *) f[n_] := FactorInteger[CatalanNumber[2^n - 1]][[ -1, 1]]; lst = {}; Do[ Append[lst, f@n], {n, 2, 20}]; lst (* Or *) (* Robert G. Wilson v, May 11 2007 *)
    PrevPrim[n_] := Block[{k = n - 1}, While[ ! PrimeQ@k, k-- ]; k]; Table[ PrevPrim[2^n - 2], {n, 3, 32}] (* Robert G. Wilson v, May 11 2007 *)
    Table[NextPrime[2^n-2,-1],{n,3,50}] (* Harvey P. Dale, Apr 22 2018 *)

Formula

Equals greatest prime less than 2^n-2. - Robert G. Wilson v, May 11 2007

Extensions

More terms from Robert G. Wilson v, May 11 2007
Edited by N. J. A. Sloane, Oct 15 2007