A120278 a(n) = Sum_{m=1..n} Sum_{k=1..m} C(2*k,k), where C(2*k,k) = (2*k)!/(k!)^2 = A000984(k).
2, 10, 38, 136, 486, 1760, 6466, 24042, 90238, 341190, 1297574, 4958114, 19019254, 73196994, 282492254, 1092867904, 4236849774, 16455966944, 64020347914, 249431257704, 973100041934, 3800867789884, 14862066265434, 58170868424084
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
Table[Sum[Sum[(2k)!/(k!)^2,{k,1,m}],{m,1,n}],{n,1,50}] CoefficientList[Series[(1/Sqrt[1-4 x]-1)/((x-1)^2 x),{x,0,50}],x] (* Harvey P. Dale, May 24 2011 *)
Formula
a(n) = Sum_{m=1..n} Sum_{k=1..m} (2*k)!/(k!)^2.
G.f.: x*(1/sqrt(1-4*x)-1)/(x*(x-1)^2). - Harvey P. Dale, May 24 2011
Recurrence: n*a(n) = 2*(3*n-1)*a(n-1) - (9*n-4)*a(n-2) + 2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(2*n+4)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012
Comments