A120279 a(n) = Sum[Sum[(i+j)!/i!/j!,{i,1,j}],{j,1,n}].
2, 11, 45, 170, 631, 2346, 8780, 33089, 125466, 478181, 1830258, 7030557, 27088856, 104647615, 405187809, 1571990918, 6109558567, 23782190466, 92705454875, 361834392094, 1413883873953, 5530599237752, 21654401079301, 84859704298176
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
Table[Sum[Sum[(i+j)!/i!/j!,{i,1,j}],{j,1,n}],{n,1,50}]
Formula
a(n) = Sum[Sum[(i+j)!/i!/j!,{i,1,j}],{j,1,n}]. a(n) = A079309(n+1) - (n+1). a(n) = A066796(n+1)/2 - (n+1).
Recurrence: (n+1)*(3*n-2)*a(n) = 6*(3*n^2-1)*a(n-1) - 3*(9*n^2-n-2)*a(n-2) + 2*(2*n-1)*(3*n+1)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(2*n+3)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012
a(n) = Sum_{k=1..n} Sum_{i=1..k} C(k+i,i). - Wesley Ivan Hurt, Sep 19 2017
Comments