A120289 Primes p such that p divides the numerator of Sum_{k=1..n-1} 1/prime(k)^p, where p = prime(n).
5, 19, 47, 79, 109
Offset: 1
Keywords
Examples
a(1) = 5 because prime 5 divides 275 = numerator(1/2^5 + 1/3^5). Sum_{k=1..n-1} 1/prime(k)^prime(n) begins: n=2: 1/2^3 = 1/8; n=3: 1/2^5 + 1/3^5 = 275/7776; n=4: 1/2^7 + 1/3^7 + 1/5^7 = 181139311/21870000000; n=5: 1/2^11 + 1/3^11 + 1/5^11 + 1/7^11 = 17301861338484245234233/35027750054222100000000000.
Crossrefs
Cf. A119722.
Programs
-
Python
from fractions import Fraction from sympy import isprime, primerange def ok(p): if p < 3 or not isprime(p): return False s = sum(Fraction(1, pk**p) for pk in primerange(2, p)) return s.numerator%p == 0 print([k for k in range(200) if ok(k)]) # Michael S. Branicky, Jun 26 2022
Comments