A120362 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the second kind.
1, 0, -1, 0, 4, -3, 0, -16, 60, -45, 0, 64, -1008, 2520, -1575, 0, -256, 16320, -105840, 189000, -99225, 0, 1024, -261888, 4055040, -15800400, 21829500, -9823275, 0, -4096, 4193280, -149909760, 1153152000, -3178375200, 3575672100, -1404728325, 0, 16384, -67104768, 5459650560
Offset: 1
Examples
E(m,phi) = phi - m*phi^3/3! + (4*m-3*m^2)*phi^5/5! + (-16*m+60*m^2-45*m^3)*phi^7/7! + ... so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi, the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!.
Links
Programs
-
Maple
an := proc(m,n,s) local f: f := coeftayl(EllipticE(sin(phi),m^(1/2)),phi=0,n); coeftayl(f*n!,m=0,s) ; end: nmax := 27 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d,",an(m,n,s)) ; od ; od;
-
Mathematica
a[n_, s_] := SeriesCoefficient[EllipticE[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 06 2014 *)
-
PARI
{T(n, k) = my(m = 2*n+1); if( k<0 || n
Michael Somos, May 04 2017 */
Formula
E(m,phi) = Int_{theta=0..phi} sqrt(1-m*sin^2 theta) d theta.
E(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a( (n+1)/2,s ) * m^s )*phi^n/n!.
Comments