cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120362 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the second kind.

Original entry on oeis.org

1, 0, -1, 0, 4, -3, 0, -16, 60, -45, 0, 64, -1008, 2520, -1575, 0, -256, 16320, -105840, 189000, -99225, 0, 1024, -261888, 4055040, -15800400, 21829500, -9823275, 0, -4096, 4193280, -149909760, 1153152000, -3178375200, 3575672100, -1404728325, 0, 16384, -67104768, 5459650560
Offset: 1

Views

Author

R. J. Mathar, Jun 26 2006

Keywords

Comments

Table has only rows for odd h because all coefficients for even h are zero:
=====|=======================================================================
h \ s| 0 1 2 3 4 5 6
-----|-----------------------------------------------------------------------
1 | 1
3 | 0 -1
5 | 0 4 -3
7 | 0 -16 60 -45
9 | 0 64 -1008 2520 -1575
11 | 0 -256 16320 -105840 189000 -99225
13 | 0 1024 -261888 4055040 -15800400 21829500 -9823275
15 | 0 -4096 4193280 -149909760 1153152000 -3178375200 3575672100
17 | 0 16384 -67104768 5459650560 -79048569600 390486096000 -829555927200
...
From Francesco Franco, Jan 12 2016: (Start)
Conjecture:
If t(h,s) is any term of the previous table after the first column (s>0), then:
t(h,s) = -( 4*s^2*t(h-2,s) + Sum_{j=0..s-1} (t(h-2,j) + t(h,j)) ), with t(1,0) = 1, t(h,0) = 0 for h>1 and t(h,s) = 0 for odd h = 1..2*s-1.
Version without the summation:
t(h,s) = -( 4*s^2*t(h-2,s) - (4*(s-1)^2-1)*t(h-2,s-1) ).
Some example (starting from j=1 in the summation):
t(11,3) = -( 4*t(9,3)*3^2 + Sum_{j=1..2} (t(9,j) + t(11,j)) ) = -( 4*2520*9 + (64-256) + (-1008+16320) ) = -105840; second version:
t(17,5) = -( 4*5^2*t(15,5) - (4*4^2-1)*t(15,4) ) = -( 4*25*(-3178375200) - 63*1153152000 ) = 390486096000.
Also:
t(h,1) = (-1)^(h/2-1/2)*A000302(h/2-3/2) for h>1;
t(h,2) = (-1)^(h/2-3/2)*A115490(h/2-3/2) for h>3;
a(A000124(n)) = 0.
(End)

Examples

			E(m,phi) = phi - m*phi^3/3! + (4*m-3*m^2)*phi^5/5! + (-16*m+60*m^2-45*m^3)*phi^7/7! + ...
so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi,
the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!.
		

Crossrefs

Cf. A010370, A079484 (diagonal).

Programs

  • Maple
    an := proc(m,n,s) local f: f := coeftayl(EllipticE(sin(phi),m^(1/2)),phi=0,n); coeftayl(f*n!,m=0,s) ; end: nmax := 27 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d,",an(m,n,s)) ; od ; od;
  • Mathematica
    a[n_, s_] := SeriesCoefficient[EllipticE[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 06 2014 *)
  • PARI
    {T(n, k) = my(m = 2*n+1); if( k<0 || nMichael Somos, May 04 2017 */

Formula

E(m,phi) = Int_{theta=0..phi} sqrt(1-m*sin^2 theta) d theta.
E(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a( (n+1)/2,s ) * m^s )*phi^n/n!.