cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120385 If a(n-1) = 1 then largest value so far + 1, otherwise floor(a(n-1)/2); or table T(n,k) with T(n,0) = n, T(n,k+1) = floor(T(n,k)/2).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 2, 1, 5, 2, 1, 6, 3, 1, 7, 3, 1, 8, 4, 2, 1, 9, 4, 2, 1, 10, 5, 2, 1, 11, 5, 2, 1, 12, 6, 3, 1, 13, 6, 3, 1, 14, 7, 3, 1, 15, 7, 3, 1, 16, 8, 4, 2, 1, 17, 8, 4, 2, 1, 18, 9, 4, 2, 1, 19, 9, 4, 2, 1, 20, 10, 5, 2, 1, 21, 10, 5, 2, 1, 22, 11, 5, 2, 1, 23, 11, 5, 2, 1, 24, 12, 6, 3, 1, 25
Offset: 1

Views

Author

Keywords

Comments

Although not strictly a fractal sequence as defined in the Kimberling link, this sequence has many fractal properties. If the first instance of each value is removed, the result is the original sequence with each row repeated twice. Removing all odd-indexed instances of each value does give the original sequence.

Examples

			The table starts:
  1;
  2, 1;
  3, 1;
  4, 2, 1;
  5, 2, 1;
  6, 3, 1;
  7, 3, 1;
  8, 4, 2, 1;
		

Crossrefs

Cf. A029837 (row lengths), A083652 (position of first n).
Cf. A005187 (row sums). A001477, A050292, A080277.

Programs

  • Maple
    T:= proc(n) T(n):= `if`(n=1, 1, [n, T(iquo(n, 2))][]) end:
    seq(T(n), n=1..30);  # Alois P. Heinz, Feb 12 2019
  • Mathematica
    Flatten[Function[n,NestWhile[Append[#, Floor[Last[#]/2]] &, {n}, Last[#] != 1 &]][#] & /@ Range[50]] (* Birkas Gyorgy, Apr 14 2011 *)

Formula

T(n,k) = floor(n/2^(k-1)).
From Peter Bala, Feb 02 2013: (Start)
The n-th row polynomial R(n,t) = Sum_{k>=0} t^k*floor(n/2^k) and satisfies the recurrence equation R(n,t) = t*R(floor(n/2),t) + n, with R(1,t) = 1.
O.g.f. Sum_{n>=1} R(n,t)*x^n = 1/(1-x)*Sum_{n>=0} t^n*x^(2^n)/(1 - x^(2^n)).
Product_{n>=1} ( 1 + x^((t^n - 2^n)/(t-2)) ) = 1 + Sum_{n>=1} x^R(n,t) = 1 + x + x^(2 + t) + x^(3 + t) + x^(4 + 2*t + t^2) + .... For related sequences see A050292 (t = -1), A001477(t = 0), A005187 (t = 1) and A080277 (t = 2).
(End)