A120385 If a(n-1) = 1 then largest value so far + 1, otherwise floor(a(n-1)/2); or table T(n,k) with T(n,0) = n, T(n,k+1) = floor(T(n,k)/2).
1, 2, 1, 3, 1, 4, 2, 1, 5, 2, 1, 6, 3, 1, 7, 3, 1, 8, 4, 2, 1, 9, 4, 2, 1, 10, 5, 2, 1, 11, 5, 2, 1, 12, 6, 3, 1, 13, 6, 3, 1, 14, 7, 3, 1, 15, 7, 3, 1, 16, 8, 4, 2, 1, 17, 8, 4, 2, 1, 18, 9, 4, 2, 1, 19, 9, 4, 2, 1, 20, 10, 5, 2, 1, 21, 10, 5, 2, 1, 22, 11, 5, 2, 1, 23, 11, 5, 2, 1, 24, 12, 6, 3, 1, 25
Offset: 1
Examples
The table starts: 1; 2, 1; 3, 1; 4, 2, 1; 5, 2, 1; 6, 3, 1; 7, 3, 1; 8, 4, 2, 1;
Links
- Alois P. Heinz, Rows n = 1..2048, flattened
- C. Kimberling, Fractal sequences
Crossrefs
Programs
-
Maple
T:= proc(n) T(n):= `if`(n=1, 1, [n, T(iquo(n, 2))][]) end: seq(T(n), n=1..30); # Alois P. Heinz, Feb 12 2019
-
Mathematica
Flatten[Function[n,NestWhile[Append[#, Floor[Last[#]/2]] &, {n}, Last[#] != 1 &]][#] & /@ Range[50]] (* Birkas Gyorgy, Apr 14 2011 *)
Formula
T(n,k) = floor(n/2^(k-1)).
From Peter Bala, Feb 02 2013: (Start)
The n-th row polynomial R(n,t) = Sum_{k>=0} t^k*floor(n/2^k) and satisfies the recurrence equation R(n,t) = t*R(floor(n/2),t) + n, with R(1,t) = 1.
O.g.f. Sum_{n>=1} R(n,t)*x^n = 1/(1-x)*Sum_{n>=0} t^n*x^(2^n)/(1 - x^(2^n)).
Product_{n>=1} ( 1 + x^((t^n - 2^n)/(t-2)) ) = 1 + Sum_{n>=1} x^R(n,t) = 1 + x + x^(2 + t) + x^(3 + t) + x^(4 + 2*t + t^2) + .... For related sequences see A050292 (t = -1), A001477(t = 0), A005187 (t = 1) and A080277 (t = 2).
(End)
Comments