A120399 Consider n x n chessboard. This sequence gives number of chess knight paths from left bottom corner of the board to the right top corner with minimal possible path length (shortest paths).
1, 0, 2, 2, 8, 4, 6, 108, 40, 20, 858, 252, 70, 5596, 1344, 252, 32814, 6600, 924, 179696, 30888, 3432, 937794, 140140, 12870, 4721964, 622336, 48620, 23127208, 2720952, 184756, 110809672, 11757200, 705432, 521527428, 50338904, 2704156, 2418585240, 213955200
Offset: 1
Keywords
Examples
a(2)=0 because final path point is out of reach, for n=3 K(3)=4, a(3)=2 (a1-b3-c1-a2-c3) or (a1-c2-a3-b1-c3) a(4)=2 (a1-b3-d4) or (a1-c2-d4)
Formula
Let K(n) equal shortest path length. Then for n>3 K(n)=2[(n+1)/3], where [x]=floor(x). a(n)=2*(K-2)*binomial(K-1,K/2-2), if n mod 3 = 0 a(n)=binomial(K,K/2), if n mod 3 = 1 a(n)=(K-2)*(K-3)*binomial(K-2,K/2-1)+2*((K-2)*binomial(K-1,K/2-2)- 2*binomial(K-2,K/2-3))+2*(binomial(K-2,2)*binomial(K-2,K/2-4)- 2*binomial(K-3,K/2-5)), if n mod 3 = 2
In the above expressions binomial(x,y) = x!/(y!(x - y)!). g(x) = ( - (2*x^9 + 3*x^6 - 36*x^3 + 19) + 2*(7*x^9 - 14*x^6 + 7*x^3 - 1)/(1 - 4*x^3)^(1/2) + 2*x^3*(10*x^9 - 36*x^6 + 21*x^3 - 3)/(1 - 4*x^3)^(3/2) + (16*x^15 + 860*x^12 - 1710*x^9 + 1039*x^6 - 250*x^3 + 21)/(1 - 4*x^3)^(5/2))/x^7 + x/(1 - 4*x^3)^(1/2) - 2 + 4/x^3 + 2*x^3 - 2*(2*x^3 - 1)*(9*x^3 - 2)/x^3/(1 - 4*x^3)^(3/2);
Extensions
a(18)-a(39) from Alois P. Heinz, Jan 28 2015
Comments