cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120399 Consider n x n chessboard. This sequence gives number of chess knight paths from left bottom corner of the board to the right top corner with minimal possible path length (shortest paths).

Original entry on oeis.org

1, 0, 2, 2, 8, 4, 6, 108, 40, 20, 858, 252, 70, 5596, 1344, 252, 32814, 6600, 924, 179696, 30888, 3432, 937794, 140140, 12870, 4721964, 622336, 48620, 23127208, 2720952, 184756, 110809672, 11757200, 705432, 521527428, 50338904, 2704156, 2418585240, 213955200
Offset: 1

Views

Author

Sergey Perepechko, Jul 02 2006

Keywords

Comments

Generating function for this sequence obeys the following second order algebraic equation: x^7*(4*x^3 - 1)^5*g(x)^2 - 2*(4*x^3 - 1)^5*(2*x^10 - 2*x^9 - 2*x^7 - 3*x^6 + 4*x^4 + 36*x^3 - 19)*g(x) + (4096*x^28 - 8192*x^27 + 4096*x^26 - 13312*x^25 + 6144*x^24 + 32768*x^23 + 38400*x^22 + 189696*x^21 + 48128*x^20 - 10112*x^19 - 300288*x^18 - 76800*x^17 - 46320*x^16 + 189888*x^15 + 27824*x^14 + 52492*x^13 - 65080*x^12 + 1876*x^11 - 24840*x^10 + 13181*x^9 - 2404*x^8 + 6074*x^7 - 1512*x^6 + 296*x^5 - 756*x^4 + 76*x^3 + 38*x)=0.

Examples

			a(2)=0 because final path point is out of reach,
for n=3 K(3)=4, a(3)=2 (a1-b3-c1-a2-c3) or (a1-c2-a3-b1-c3)
a(4)=2 (a1-b3-d4) or (a1-c2-d4)
		

Formula

Let K(n) equal shortest path length. Then for n>3 K(n)=2[(n+1)/3], where [x]=floor(x). a(n)=2*(K-2)*binomial(K-1,K/2-2), if n mod 3 = 0 a(n)=binomial(K,K/2), if n mod 3 = 1 a(n)=(K-2)*(K-3)*binomial(K-2,K/2-1)+2*((K-2)*binomial(K-1,K/2-2)- 2*binomial(K-2,K/2-3))+2*(binomial(K-2,2)*binomial(K-2,K/2-4)- 2*binomial(K-3,K/2-5)), if n mod 3 = 2
In the above expressions binomial(x,y) = x!/(y!(x - y)!). g(x) = ( - (2*x^9 + 3*x^6 - 36*x^3 + 19) + 2*(7*x^9 - 14*x^6 + 7*x^3 - 1)/(1 - 4*x^3)^(1/2) + 2*x^3*(10*x^9 - 36*x^6 + 21*x^3 - 3)/(1 - 4*x^3)^(3/2) + (16*x^15 + 860*x^12 - 1710*x^9 + 1039*x^6 - 250*x^3 + 21)/(1 - 4*x^3)^(5/2))/x^7 + x/(1 - 4*x^3)^(1/2) - 2 + 4/x^3 + 2*x^3 - 2*(2*x^3 - 1)*(9*x^3 - 2)/x^3/(1 - 4*x^3)^(3/2);

Extensions

a(18)-a(39) from Alois P. Heinz, Jan 28 2015