cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120409 a(n) = n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6/(1!*2!*3!*4!*5!*6!).

Original entry on oeis.org

162000, 26471025, 1376829440, 36294822144, 600112800000, 7031325609000, 63117561830400, 457937132487120, 2790771598030416, 14702257341646875, 68449036271616000, 286552568263270400, 1093771338292039680, 3849852478998931776, 12612749124441600000
Offset: 1

Views

Author

Zerinvary Lajos, Jul 05 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq(n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6/(1!*2!*3!*4!*5!*6!),n=1..27)];
  • Mathematica
    Table[(Times@@Table[(n+k)^(k+1),{k,0,5}])/Times@@(Range[6]!),{n,15}] (* Harvey P. Dale, Jun 07 2022 *)
  • Sage
    [binomial(n,1)*binomial(n,3)*binomial(n,5)*binomial(n,2)*binomial(n,4)*binomial(n,6) for n in range(6, 19)] # Zerinvary Lajos, May 17 2009

Formula

Sum_{n>=1} 1/a(n) = 789878089*Pi^2/18000 + 64687*Pi^4/150 - 16*Pi^6/21 + 6603436*zeta(3)/25 + 80136*zeta(5) - 56698539425671/64800000. - Amiram Eldar, Sep 08 2022

Extensions

Offset changed from 0 to 1 by Georg Fischer, May 08 2021