cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120454 a(n) = ceiling(GPF(n)/LPF(n)) where GPF is greatest prime factor, LPF is least prime factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 2, 1, 1, 2, 1, 3, 3, 6, 1, 2, 1, 7, 1, 4, 1, 3, 1, 1, 4, 9, 2, 2, 1, 10, 5, 3, 1, 4, 1, 6, 2, 12, 1, 2, 1, 3, 6, 7, 1, 2, 3, 4, 7, 15, 1, 3, 1, 16, 3, 1, 3, 6, 1, 9, 8, 4, 1, 2, 1, 19, 2, 10, 2, 7, 1, 3, 1, 21, 1, 4, 4, 22, 10, 6, 1, 3, 2, 12, 11, 24, 4, 2, 1, 4, 4
Offset: 1

Views

Author

Jonathan Vos Post, Aug 16 2006

Keywords

Comments

Given GPF(n) and LPF(n), the sum is A074320, the difference is A046665 and the product is A066048. a(n) = 1 iff n is p^k iff n is in A000961.

Examples

			a(26) = ceiling(GPF(26)/LPF(26)) = ceiling(13/2) = 7.
		

Crossrefs

Programs

  • Maple
    A120454 := proc(n) local ifs ; if n = 1 then RETURN(1) ; else ifs := ifactors(n)[2] ; RETURN( ceil(op(1,op(-1,ifs))/op(1,op(1,ifs))) ) ; fi ; end ; for n from 1 to 100 do printf("%d, ",A120454(n)) ; od ; # R. J. Mathar, Dec 16 2006
  • Mathematica
    a[n_] := Module[{p = FactorInteger[n][[;;, 1]]}, Ceiling[p[[-1]] / p[[1]]]]; Array[a, 100] (* Amiram Eldar, Oct 24 2024 *)
  • PARI
    A120454(n) = if(1==n,1, my(f = factor(n), lpf = f[1, 1], gpf = f[#f~, 1]); ceil(gpf/lpf)); \\ Antti Karttunen, Sep 06 2018

Formula

a(n) = ceiling(A006530(n)/A020639(n)).
a(n) = A069897(n) + 1 if n is not a power of a prime (A024619), and 1 otherwise. - Amiram Eldar, Oct 24 2024

Extensions

Corrected and extended by R. J. Mathar, Dec 16 2006