A120462 Expansion of -2*x*(-3-2*x+4*x^2) / ((x-1)*(2*x+1)*(2*x-1)*(1+x)).
0, 6, 4, 22, 20, 86, 84, 342, 340, 1366, 1364, 5462, 5460, 21846, 21844, 87382, 87380, 349526, 349524, 1398102, 1398100, 5592406, 5592404, 22369622, 22369620, 89478486, 89478484, 357913942, 357913940, 1431655766, 1431655764, 5726623062
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-4).
Programs
-
Mathematica
M = {{0, 1, 0, 0, 0, 1}, {1, 0, 1, 0, 0, 0}, {0, 1, 0, 1, 0, 0}, {0, 0, 1, 0, 1, 0}, {0, 0, 0, 1, 0, 1}, {1, 0, 0, 0, 1, 0}} v[1] = {0, 1, 1, 2, 3, 5} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] LinearRecurrence[{0,5,0,-4},{0,6,4,22},40] (* Harvey P. Dale, Jul 28 2024 *)
-
PARI
concat(0, Vec(2*x*(3+2*x-4*x^2)/((1-x)*(1+x)*(1-2*x)*(1+2*x)) + O(x^40))) \\ Colin Barker, Sep 09 2016
Formula
From Colin Barker, Sep 09 2016: (Start)
a(n) = -2*(1/6 + (-2)^n/3 + (-1)^n/2 - 2^n).
a(n) = 5*a(n-2)-4*a(n-4) for n>3.
(End)
Comments