cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120462 Expansion of -2*x*(-3-2*x+4*x^2) / ((x-1)*(2*x+1)*(2*x-1)*(1+x)).

Original entry on oeis.org

0, 6, 4, 22, 20, 86, 84, 342, 340, 1366, 1364, 5462, 5460, 21846, 21844, 87382, 87380, 349526, 349524, 1398102, 1398100, 5592406, 5592404, 22369622, 22369620, 89478486, 89478484, 357913942, 357913940, 1431655766, 1431655764, 5726623062
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jun 28 2006

Keywords

Comments

Top element of the vector obtained by multiplying the n-th power of the 6 X 6 matrix [[0, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 0, 1, 0, 1], [1, 0, 0, 0, 1, 0]] by the column vector [0, 1, 1, 2, 3, 5].

Programs

  • Mathematica
    M = {{0, 1, 0, 0, 0, 1}, {1, 0, 1, 0, 0, 0}, {0, 1, 0, 1, 0, 0}, {0, 0, 1, 0, 1, 0}, {0, 0, 0, 1, 0, 1}, {1, 0, 0, 0, 1, 0}} v[1] = {0, 1, 1, 2, 3, 5} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    LinearRecurrence[{0,5,0,-4},{0,6,4,22},40] (* Harvey P. Dale, Jul 28 2024 *)
  • PARI
    concat(0, Vec(2*x*(3+2*x-4*x^2)/((1-x)*(1+x)*(1-2*x)*(1+2*x)) + O(x^40))) \\ Colin Barker, Sep 09 2016

Formula

a(2*n+1) = A047849(n+2). a(2*n)= 2*A020988(n). - R. J. Mathar, Nov 07 2011
From Colin Barker, Sep 09 2016: (Start)
a(n) = -2*(1/6 + (-2)^n/3 + (-1)^n/2 - 2^n).
a(n) = 5*a(n-2)-4*a(n-4) for n>3.
(End)