cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120477 Apply partial sum operator 5 times to partition numbers.

Original entry on oeis.org

1, 6, 22, 63, 155, 343, 702, 1352, 2480, 4370, 7445, 12323, 19894, 31421, 48675, 74111, 111099, 164221, 239656, 345670, 493243, 696861, 975518, 1353971, 1864315, 2547941, 3457972, 4662273, 6247169, 8322010, 11024775, 14528914, 19051697
Offset: 0

Views

Author

Jonathan Vos Post, Jul 21 2006

Keywords

Comments

In general, if g.f. = 1/(1-x)^m * Product_{k>=1} 1/(1-x^k), then a(n) ~ 2^(m/2 - 2) * 3^((m-1)/2) * n^(m/2 - 1) * exp(Pi*sqrt(2*n/3)) / Pi^m. - Vaclav Kotesovec, Oct 30 2015

Crossrefs

Column k=6 of A292508.

Programs

  • Maple
    with(combinat): g:=1/(1-x)^5/product(1-x^k,k=1..50): gser:=series(g,x=0,40): seq(coeff(gser,x,n),n=0..37); # Emeric Deutsch, Jul 24 2006
  • Mathematica
    nmax = 50; CoefficientList[Series[1/((1-x)^5 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)

Formula

G.f.: 1/((1-x)^5*Product_{k>=1} (1-x^k)). - Emeric Deutsch, Jul 24 2006
a(n) ~ 9*sqrt(2)*n^(3/2) * exp(Pi*sqrt(2*n/3)) / Pi^5. - Vaclav Kotesovec, Oct 30 2015

Extensions

More terms from Emeric Deutsch, Jul 24 2006