A120566 G.f. satisfies: A(x) = A(A(x)) - x*A(A(A(x))), with A(0)=0.
1, 1, 1, 3, 7, 33, 109, 643, 2623, 17929, 85349, 652395, 3517911, 29484193, 176844781, 1605009651, 10575269935, 103033059513, 738834271605, 7676696689275, 59466011617671, 655467253898577, 5451048833933693
Offset: 1
Keywords
Examples
A(x) = x + x^2 + x^3 + 3x^4 + 7x^5 + 33x^6 + 109x^7 + 643x^8 +... A(A(x)) = x + 2x^2 + 4x^3 + 12x^4 + 40x^5 + 168x^6 + 736x^7 + 3784x^8+.. x*A(A(A(x))) = x^2 + 3x^3 + 9x^4 + 33x^5 + 135x^6 + 627x^7 + 3141x^8+...
Programs
-
PARI
{a(n)=local(A=x+x^2+x*O(x^n));if(n<1,0, for(i=1,n,A=x-subst(A,x,-x)*subst(A,x,A));polcoeff(A,n))}
Formula
G.f. satisfies: A(-A(-x)) = x ; Also: A(x) = x + A(A(x))*series_reversion(A(x)).
Since g.f. satisfies: A(A(x)) = ( x - A(x) )/A(-x), then higher order self-compositions of A(x) reduce into expressions involving A(x) and A(-x). - Paul D. Hanna, Jul 22 2006
Comments