cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120589 Self-convolution of A120588, such that a(n) = 3*A120588(n) for n >= 2.

Original entry on oeis.org

1, 2, 3, 6, 15, 42, 126, 396, 1287, 4290, 14586, 50388, 176358, 624036, 2228700, 8023320, 29084535, 106073010, 388934370, 1432916100, 5301789570, 19692361260, 73398801060, 274447690920, 1029178840950, 3869712441972, 14585839204356
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006

Keywords

Comments

For n >= 2, a(n) equals 2^(2n+1) times the coefficient of Pi in 2F1([3/2, n+1], [5/2], -1). - John M. Campbell, Jul 17 2011

Examples

			A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 + ...
A(x)^(1/2) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ...
		

Crossrefs

Cf. A120588 (A(x)^(1/2)); A120590-A120607.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-2*x-3*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019
    
  • Maple
    A120589List := proc(m) local A, P, n; A := [1,2,3]; P := [3];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A120589List(26); # Peter Luschny, Mar 26 2022
  • Mathematica
    Join[{1,2,3}, Table[3*(2*n)!/n!/(n+1)!, {n,2,40}]]
    CoefficientList[Series[(5-2x -3Sqrt[1-4x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *)
  • PARI
    {a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A^2,n)}
    
  • PARI
    my(x='x+O('x^30)); Vec((5-2*x-3*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 18 2019
    
  • Sage
    ((5-2*x-3*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019

Formula

a(n) = 3*A000108(n-1) for n >= 2, where A000108 are the Catalan numbers.
G.f.: (5 - 2*x - 3*sqrt(1-4*x))/2. - G. C. Greubel, Feb 18 2019
a(n) ~ 3 * 2^(2*n-2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 20 2025