cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120596 G.f. satisfies: 6*A(x) = 5 + x + A(x)^5, starting with [1,1,10].

Original entry on oeis.org

1, 1, 10, 210, 5505, 161601, 5082420, 167451780, 5705082795, 199354509755, 7105393162010, 257312347583330, 9440808323869455, 350189693739455535, 13110655796699158800, 494772468434359266960, 18801468275832345890970
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + x + 10*x^2 + 210*x^3 + 5505*x^4 + 161601*x^5 +...
A(x)^5 = 1 + 5*x + 60*x^2 + 1260*x^3 + 33030*x^4 + 969606*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[1+6*x - (1+x)^5, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
  • PARI
    {a(n)=local(A=1+x+10*x^2+x*O(x^n));for(i=0,n,A=A-6*A+5+x+A^5);polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Series_Reversion(1+6*x - (1+x)^5). Lagrange Inversion yields: G.f.: A(x) = Sum_{n>=0} C(5*n,n)/(4*n+1) * (5+x)^(4*n+1)/6^(5*n+1). - Paul D. Hanna, Jan 24 2008
a(n) ~ (-5 + 4*(6/5)^(5/4))^(1/2 - n) / (2^(15/8) * 3^(3/8) * 5^(1/8) * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Nov 28 2017

A120598 G.f. satisfies: 30*A(x) = 29 + 125*x + A(x)^5, starting with [1,5,10].

Original entry on oeis.org

1, 5, 10, 90, 825, 8445, 92820, 1066740, 12670635, 154308775, 1916370170, 24177471370, 309007779015, 3992428316835, 52059968802000, 684240882022800, 9055282215370050, 120563388411386850, 1613785688724362400
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + 5*x + 10*x^2 + 90*x^3 + 825*x^4 + 8445*x^5 +...
A(x)^5 = 1 + 25*x + 300*x^2 + 2700*x^3 + 24750*x^4 + 253350*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[(1+30*x - (1+x)^5)/125, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
  • PARI
    {a(n)=local(A=1+5*x+10*x^2+x*O(x^n));for(i=0,n,A=A+(-30*A+29+125*x+A^5)/25);polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Series_Reversion((1+30*x - (1+x)^5)/125). Lagrange Inversion yields: G.f.: A(x) = Sum_{n>=0} C(5*n,n)/(4*n+1) * (29+125*x)^(4*n+1)/30^(5*n+1). - Paul D. Hanna, Jan 24 2008
a(n) ~ 5^(-1/2 + 3*n) * (-29 + 24*6^(1/4))^(1/2 - n) / (2^(15/8) * 3^(3/8) * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Nov 28 2017
Showing 1-2 of 2 results.