A120711 Expansion of 2*x*(7+16*x-2*x^2-14*x^3)/(1-11*x^2-12*x^3+10*x^4+12*x^5).
0, 14, 32, 150, 492, 1894, 6724, 24854, 89972, 329238, 1197972, 4372054, 15930580, 58096214, 211770452, 772129110, 2814859092, 10262536534, 37414140244, 136403674454, 497291840852, 1813006427478, 6609762501972, 24097566365014
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Fano Plane
- Index entries for linear recurrences with constant coefficients, signature (0,11,12,-10,-12).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 2*x*(7+16*x-2*x^2-14*x^3)/(1-11*x^2-12*x^3+10*x^4+12*x^5) )); // G. C. Greubel, Jul 22 2023 -
Mathematica
M = {{0,1,0,0,0,1,1}, {1,0,1,0,0,0,1}, {0,1,0,1,0,0,1}, {0,0,1,0,1,0, 1}, {0,0,0,1,0,1,1}, {1,0,0,0,1,0,1}, {1,1,1,1,1,1,0}}; v[1] = {0,1,1,2,3,5,8}; v[n_]:= v[n]= M.v[n-1]; Table[v[n][[1]], {n,50}] LinearRecurrence[{0,11,12,-10,-12}, {0,14,32,150,492}, 40] (* G. C. Greubel, Jul 22 2023 *)
-
SageMath
A083099=BinaryRecurrenceSequence(2,6,0,1) def A120711(n): return (1/3)*(-1 -3*(-1)^n +(-2)^(n+1) +6*(A083099(n+1) +4*A083099(n))) [A120711(n) for n in range(41)] # G. C. Greubel, Jul 22 2023
Formula
a(n) = 11*a(n-2) + 12*a(n-3) - 10*a(n-4) - 12*a(n-5).
G.f.: 2*x*(7+16*x-2*x^2-14*x^3)/((1-x)*(1+x)*(1+2*x)*(1-2*x-6*x^2)). - Colin Barker, Mar 26 2012
a(n) = (1/3)*(-1 - 3*(-1)^n + (-2)^(n+1) + 6*(A083099(n+1) + 4*A083099(n))). - G. C. Greubel, Jul 22 2023
Extensions
Edited by G. C. Greubel, Jul 22 2023
Comments