A120712 Numbers k with the property that the concatenation of the nontrivial divisors of k (i.e., excluding 1 and k) is a prime.
4, 6, 9, 21, 22, 25, 33, 39, 46, 49, 51, 54, 58, 78, 82, 93, 99, 111, 115, 121, 133, 141, 142, 147, 153, 154, 159, 162, 166, 169, 174, 177, 186, 187, 189, 201, 205, 219, 226, 235, 237, 247, 249, 253, 262, 267, 274, 286, 289, 291, 294, 301, 318
Offset: 1
Examples
k | divisors | concatenation ---+----------------+-------------- 4 | (1) 2 (4) | 2 6 | (1) 2, 3 (6) | 23 9 | (1) 3 (9) | 3 21 | (1) 3, 7 (21) | 37 22 | (1) 2, 11 (22) | 211 25 | (1) 5 (25) | 5 33 | (1) 3, 11 (33) | 311 39 | (1) 3, 13 (39) | 313
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): for k from 2 to 1000 do: v0:=divisors(k): nn:=nops(v0): if nn > 2 then v1:=[seq(v0[j],j=2..nn-1)]: v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))): v3:=parse(v2): if isprime(v3) = true then lprint(k,v3) fi: fi: od: # Simon Plouffe
-
Mathematica
fQ[n_] := PrimeQ@ FromDigits@ Most@ Rest@ Divisors@ n; Select[ Range[2, 320], fQ]
-
Python
from sympy import divisors, isprime def ok(n): s = "".join(str(d) for d in divisors(n)[1:-1]) return s != "" and isprime(int(s)) print([k for k in range(319) if ok(k)]) # Michael S. Branicky, Oct 01 2024
Extensions
Name edited by Michel Marcus, Mar 09 2023