cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120721 Partial sums of A079645.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 46, 58, 72, 88, 106, 126, 148, 172, 198, 225, 255, 288, 324, 363, 405, 450, 498, 549, 603, 660, 720, 783, 847, 915, 987, 1063, 1143, 1227, 1315, 1407, 1503, 1603, 1707, 1815, 1927, 2043, 2163, 2287, 2412, 2542, 2677, 2817, 2962, 3112, 3267
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2006

Keywords

Crossrefs

Programs

  • Magma
    A079645:=[n: n in [1..500] | n mod Floor(n^(1/3)) eq 0 ];
    [(&+[A079645[k]: k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 20 2023
    
  • Mathematica
    Accumulate[Select[Range[300],Divisible[#,Floor[CubeRoot[#]]]&]] (* Harvey P. Dale, Jun 19 2023 *)
  • SageMath
    A079645=[j for j in (1..500) if j%(floor(j^(1/3)))==0]
    def A120721(n): return sum(A079645[k] for k in range(n+1))
    [A120721(n) for n in range(101)] # G. C. Greubel, Jul 20 2023

Formula

a(n) = Sum_{j=1..n} A079645(j).
a(n) ~ 2^(5/2)*n^(5/2)/(5*3^(3/2)) - 5*n^2/6. - Vaclav Kotesovec, Oct 13 2024