A120730 Another version of Catalan triangle A009766.
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 5, 4, 1, 0, 0, 0, 5, 9, 5, 1, 0, 0, 0, 0, 14, 14, 6, 1, 0, 0, 0, 0, 14, 28, 20, 7, 1, 0, 0, 0, 0, 0, 42, 48, 27, 8, 1, 0, 0, 0, 0, 0, 42, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 0, 132, 165, 110, 44, 10, 1
Offset: 0
Examples
As a triangle, this begins: 1; 0, 1; 0, 1, 1; 0, 0, 2, 1; 0, 0, 2, 3, 1; 0, 0, 0, 5, 4, 1; 0, 0, 0, 5, 9, 5, 1; 0, 0, 0, 0, 14, 14, 6, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Magma
A120730:= func< n,k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >; [A120730(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Nov 07 2022
-
Maple
G := 4*z/((2*z-1+sqrt(1-4*z^2*t))*(1+sqrt(1-4*z^2*t))): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form # Emeric Deutsch, Jun 19 2011 # second Maple program: b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1]))) end: T:= (n, k)-> b(n, 2*k-n): seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Oct 13 2022
-
Mathematica
b[x_, y_]:= b[x, y]= If[y<0 || y>x, 0, If[x==0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}] ]]; T[n_, k_] := b[n, 2 k - n]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 21 2022, after Alois P. Heinz *) T[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)]; Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 07 2022 *)
-
SageMath
def A120730(n,k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) flatten([[A120730(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 07 2022
Formula
G.f.: G(t,z) = 4*z/((2*z-1+sqrt(1-4*t*z^2))*(1+sqrt(1-4*t*z^2))). - Emeric Deutsch, Jun 19 2011
Sum_{k=0..n} x^k*T(n,n-k) = A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x=1,2,3,4,5,6,7,8,9 respectively. [corrected by Philippe Deléham, Oct 16 2008]
From Philippe Deléham, Oct 18 2008: (Start)
Sum_{k=0..n} T(n,k)^3 = A003161(n).
Sum_{k=0..n} T(n,k)^4 = A129123(n). (End)
Sum_{k=0..n}, T(n,k)*x^k = A000007(n), A001405(n), A151281(n), A151162(n), A151254(n), A156195(n), A156361(n), A156362(n), A156566(n), A156577(n) for x=0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 10 2009
From G. C. Greubel, Nov 07 2022: (Start)
T(n, k) = 0 if n > 2*k, otherwise binomial(n, k)*(2*k-n+1)/(k+1).
Sum_{k=0..n} (-1)^k*T(n,k) = A105523(n).
Sum_{k=0..n} (-1)^k*T(n,k)^2 = -A132889(n), n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A357654(n).
T(n, n-1) = A001477(n).
T(n, n-2) = [n=2] + A000096(n-3), n >= 2.
T(n, n-3) = 2*[n<5] + A005586(n-5), n >= 3.
T(n, n-4) = 5*[n<7] - 2*[n=4] + A005587(n-7), n >= 4.
T(2*n+1, n+1) = A000108(n+1), n >= 0.
T(2*n-1, n+1) = A099376(n-1), n >= 1. (End)
Comments