A120774 Number of ordered set partitions of [n] where equal-sized blocks are ordered with increasing least elements.
1, 1, 2, 8, 31, 147, 899, 5777, 41024, 322488, 2749325, 25118777, 245389896, 2554780438, 28009868787, 323746545433, 3933023224691, 49924332801387, 661988844566017, 9138403573970063, 131043199040556235, 1949750421507432009, 30031656711776544610
Offset: 0
Examples
A179233 begins 1; 1; 1 1; 6 1 1; 8 3 18 1 1 ... with row sums 1, 1 2 8 31 147 ... a(3) = 8: 123, 1|23, 23|1, 2|13, 13|2, 3|12, 12|3, 1|2|3. - _Alois P. Heinz_, Apr 27 2017
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..525
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (p+n)!/n!, add(b(n-i*j, i-1, p+j)*combinat [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..25); # Alois P. Heinz, Apr 27 2017
-
Mathematica
f[{x_,y_}]:= x!^y y!; Table[Total[Table[n!,{PartitionsP[n]}]/Apply[Times,Map[f,Map[Tally,Partitions[n]],{2}],2] * Apply[Multinomial,Map[Last,Map[Tally,Partitions[n]],{2}],2]],{n,0,20}] (* Geoffrey Critzer, Sep 29 2011 *)
Extensions
Leading 1 inserted, definition simplified by R. J. Mathar, Sep 28 2011
a(15) corrected, more terms, and new name (using Geoffrey Critzer's comment) from Alois P. Heinz, Apr 27 2017
Comments