cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120788 Numerators of partial sums of Catalan numbers scaled by powers of -1/4.

Original entry on oeis.org

1, 3, 7, 51, 109, 415, 863, 13379, 27473, 107461, 219121, 1723575, 3499153, 13810887, 27956079, 884899683, 1787478201, 7085090409, 14289590493, 113433092349, 228507214803, 907912292457, 1827259905369
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Denominators are given under A120777.
From the expansion of sqrt(2) = 1 + (1/2)*Sum_{k>=0} C(k)/(-4)^k, where C(n) are Catalan numbers, one has, with the partial sums, r(n), as defined in the formula section, r = limit_{n to infinity} r(n) = 2*(sqrt(2)-1) = 0.828427124... .

Examples

			Rationals r(n): [1, 3/4, 7/8, 51/64, 109/128, 415/512, 863/1024, 13379/16384, 27473/32768, 107461/131072, 219121/262144, ...].
		

Programs

  • GAP
    List(List([0..25], n->Sum([0..n],k->(-1/4)^k*Binomial(2*k,k)/(k+1))),NumeratorRat); # Muniru A Asiru, Mar 30 2018
  • Magma
    [Numerator((&+[(-1/4)^k*Binomial(2*k,k)/(k+1): k in [0..n]])): n in [0..30]]; // G. C. Greubel, Mar 27 2018
    
  • Mathematica
    r[n_] := Sum[(-1/4)^k*CatalanNumber[k], {k, 0, n}]; Numerator[Table[r[n], {n, 0, 50}]] (* G. C. Greubel, Mar 27 2018 *)
  • PARI
    {r(n) = sum(k=0,n, (-1/4)^k*binomial(2*k,k)/(k+1))};
    for(n=0,30, print1(numerator(r(n)), ", ")) \\ G. C. Greubel, Mar 27 2018
    

Formula

a(n) = numerator(r(n)), with the rationals r(n) := Sum_{k=0..n}((-1)^k * C(k)/4^k) with C(k) = A000108(k) (Catalan numbers). Rationals r(n) are taken in lowest terms.