A120788 Numerators of partial sums of Catalan numbers scaled by powers of -1/4.
1, 3, 7, 51, 109, 415, 863, 13379, 27473, 107461, 219121, 1723575, 3499153, 13810887, 27956079, 884899683, 1787478201, 7085090409, 14289590493, 113433092349, 228507214803, 907912292457, 1827259905369
Offset: 0
Examples
Rationals r(n): [1, 3/4, 7/8, 51/64, 109/128, 415/512, 863/1024, 13379/16384, 27473/32768, 107461/131072, 219121/262144, ...].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- W. Lang, Rationals r(n) and limit.
Programs
-
GAP
List(List([0..25], n->Sum([0..n],k->(-1/4)^k*Binomial(2*k,k)/(k+1))),NumeratorRat); # Muniru A Asiru, Mar 30 2018
-
Magma
[Numerator((&+[(-1/4)^k*Binomial(2*k,k)/(k+1): k in [0..n]])): n in [0..30]]; // G. C. Greubel, Mar 27 2018
-
Mathematica
r[n_] := Sum[(-1/4)^k*CatalanNumber[k], {k, 0, n}]; Numerator[Table[r[n], {n, 0, 50}]] (* G. C. Greubel, Mar 27 2018 *)
-
PARI
{r(n) = sum(k=0,n, (-1/4)^k*binomial(2*k,k)/(k+1))}; for(n=0,30, print1(numerator(r(n)), ", ")) \\ G. C. Greubel, Mar 27 2018
Formula
a(n) = numerator(r(n)), with the rationals r(n) := Sum_{k=0..n}((-1)^k * C(k)/4^k) with C(k) = A000108(k) (Catalan numbers). Rationals r(n) are taken in lowest terms.
Comments