cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120844 Number of multi-trace BPS operators for the quiver gauge theory of the orbifold C^2/Z_2.

Original entry on oeis.org

1, 3, 11, 32, 90, 231, 576, 1363, 3141, 7003, 15261, 32468, 67788, 138892, 280103, 556302, 1089991, 2108332, 4030649, 7620671, 14261450, 26431346, 48544170, 88393064, 159654022, 286149924, 509137464, 899603036, 1579014769
Offset: 0

Views

Author

Amihay Hanany (hanany(AT)mit.edu), Aug 25 2006

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 06 2015 after Alois P. Heinz
    # alternative program
    with(numtheory):
    series(exp(add((2*sigma[2](k) + sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+1),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: exp( Sum_{n>0} (3*x^n - x^(2*n)) / (n*(1-x^n)^2) ).
a(n) ~ Zeta(3)^(7/18) * exp(1/6 - Pi^4/(864*Zeta(3)) + Pi^2 * n^(1/3)/(3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 2^(2/9) * 3^(1/2) * Pi * n^(8/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 07 2015
From Peter Bala, Jan 16 2025: (Start)
G.f.: 1/Product_{k >= 1} (1 - x^k)^(2*k+1).
G.f.: exp(Sum_{k >= 1} (2*sigma_2(k) + sigma_1(k))*x^k/k) = 1 + 3*x + 11*x^2 + 32*x^3 + 90*x^4 + 231*x^5 + .... (End)