cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120854 Matrix log of A117939, read by rows, consisting only of 0's, 3's and signed 2's.

Original entry on oeis.org

0, 2, 0, 3, -2, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 3, -2, 0, 3, 0, 0, -2, 0, 0, 0, 0, 3, 0, 0, -2, 0, 2, 0, 0, 0, 3, 0, 0, -2, 3, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 3, -2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jul 08 2006

Keywords

Comments

The number of nonzero elements in row n equals A053735(n), the sum of ternary digits of n. Row sums are A120855(n) = 2*A062756 + A081603(n), where A062756(n) = number of 1's in ternary expansion of n and A081603(n) = number of 2's in ternary expansion of n. Triangle A117939 is related to partitions of n into powers of 3 and is the matrix square of A117947, where A117947(n,k) = balanced ternary digits of C(n,k) mod 3, also A117947(n,k) = L(C(n,k)/3) where L(j/p) is the Legendre symbol of j and p.

Examples

			Triangle begins:
0;
2, 0;
3,-2, 0;
2, 0, 0, 0;
0, 2, 0, 2, 0;
0, 0, 2, 3,-2, 0;
3, 0, 0,-2, 0, 0, 0;
0, 3, 0, 0,-2, 0, 2, 0;
0, 0, 3, 0, 0,-2, 3,-2, 0;
2, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...
Matrix exponentiation gives A117939:
1;
2, 1;
1,-2, 1;
2, 0, 0, 1;
4, 2, 0, 2, 1;
2,-4, 2, 1,-2, 1;
1, 0, 0,-2, 0, 0, 1;
2, 1, 0,-4,-2, 0, 2, 1;
1,-2, 1,-2, 4,-2, 1,-2, 1; ...
and A117939 is the matrix square of A117947:
1;
1, 1;
1,-1, 1;
1, 0, 0, 1;
1, 1, 0, 1, 1;
1,-1, 1, 1,-1, 1;
1, 0, 0,-1, 0, 0, 1;
1, 1, 0,-1,-1, 0, 1, 1;
1,-1, 1,-1, 1,-1, 1,-1, 1; ...
		

Crossrefs

Programs

  • PARI
    /* Generated as the Matrix LOG of A117939: */ T(n,k)=local(M=matrix(n+1,n+1,r,c,(binomial(r-1,c-1)+1)%3-1)^2, L=sum(i=1,#M,-(M^0-M)^i/i));return(L[n+1,k+1])
    
  • PARI
    /* Generated as the Ternary Fractal: */ T(n,k)=local(r=n,c=k,s=floor(log(n+1)/log(3))+1,u=vector(s),v=vector(s),d,e); if(n<=k,0,if(n<3&k<3,[0,0,0;2,0,0;3,-2,0][n+1,k+1], for(i=1,#u,u[i]=r%3;r=r\3);for(i=1,#v,v[i]=c%3;c=c\3); d=0;for(i=1,#v,if(u[i]!=v[i],d+=1;e=i));if(d==1,T(u[e],v[e]),0)))

Formula

Ternary fractal, T(3*n,3*k) = T(n,k), defined by: T(n,k) = 0 if n<=k or when more than 1 digit differs between the ternary expansions of n and k; else T(n,k) = T(m,j) where the only ternary digits of n, k, that differ are m, j, respectively and T(1,0)=2, T(2,1)=-2, T(2,0)=3.