A120861 Fixed-k dispersion for Q = 8: Square array D(g,h) (g, h >= 1), read by ascending antidiagonals.
1, 2, 7, 3, 12, 41, 4, 19, 70, 239, 5, 24, 111, 408, 1393, 6, 31, 140, 647, 2378, 8119, 8, 36, 181, 816, 3771, 13860, 47321, 9, 48, 210, 1055, 4756, 21979, 80782, 275807, 10, 53, 280, 1224, 6149, 27720, 128103, 470832, 1607521, 11, 60, 309, 1632, 7134
Offset: 1
Examples
Northwest corner: 1, 7, 41, 239, 1393, 8119, 47321, ... 2, 12, 70, 408, 2378, 13860, 80782, ... 3, 19, 111, 647, 3771, 21979, 128103, ... 4, 24, 140, 816, 4756, 27720, 161564, ... 5, 31, 181, 1055, 6149, 35839, 208885, ... 6, 36, 210, 1224, 7134, 41580, 242346, ... ... [Edited by _Petros Hadjicostas_, Jul 07 2020]
Links
- Clark Kimberling, The equation (j+k+1)^2 - 4*k = Q*n^2 and related dispersions, Journal of Integer Sequences, 10 (2007), Article #07.2.7.
- N. J. A. Sloane, Classic Sequences.
Crossrefs
Programs
-
PARI
f(n) = 3*n + 2*sqrtint(2*n^2) + 2; unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)););}; D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g,1]=t; listput(listus, t); t = f(t); m[g,2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g,h-1] - m[g,h-2]; m[g, h] = t; listput(listus, t););); m;}; \\ Michel Marcus, Jul 08 2020
Formula
Define f(n) = 3*n + 2*floor(n*sqrt(2)) + 2. Let D(g,h) be the term in row g and column h of the array to be defined:
D(1,1) = 1; D(1,2) = f(1); and D(1,h) = 6*D(1,h-1) - D(1,h-2) for h >= 3.
For arbitrary g >= 1, once row g is defined, define D(g+1,1) = least positive integer not in rows 1,2,...,g; D(g+1,2) = f(D(g+1,1)); and D(g+1,h) = 6*D(g+1,h-1) - D(g+1,h-2) for h >= 3. All rows after row 1 are thus inductively defined. [Corrected by Petros Hadjicostas, Jul 07 2020]
Extensions
Name edited by Petros Hadjicostas, Jul 07 2020
Comments