A120863 Fixed-k dispersion for Q = 13: array D(g,h) (g, h >= 1), read by ascending antidiagonals.
1, 2, 13, 3, 23, 142, 4, 33, 251, 1549, 5, 46, 360, 2738, 16897, 6, 56, 502, 3927, 29867, 184318, 7, 66, 611, 5476, 42837, 325799, 2010601, 8, 79, 720, 6665, 59734, 467280, 3553922, 21932293, 9, 89, 862, 7854, 72704, 651598, 5097243, 38767343, 239244622
Offset: 1
Examples
Northwest corner: 1, 13, 142, 1549, ... 2, 23, 251, 2738, ... 3, 33, 360, 3927, ... 4, 46, 502, 5476, ... 5, 56, 611, 6665, ... 6, 66, 720, 7854, ... ...
Links
- Clark Kimberling, The equation (j+k+1)^2 - 4*k = Q*n^2 and related dispersions, Journal of Integer Sequences, 10 (2007), Article #07.2.7.
- N. J. A. Sloane, Classic Sequences.
Programs
-
PARI
f(n) = floor((11 + 3*sqrt(13))/2*n) - floor(3*frac((1 + sqrt(13))*n/2)) + 3; unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); }; D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 11*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; }; lista(nb) = {my(m=D(nb)); for (n=1, nb, for (j=1, n, print1(m[n-j+1, j], ", ");););} \\ Michel Marcus, Jul 09 2020
Formula
Define f(n) = floor(r*n) - floor(3*F(n)) + 3, where r = (11 + 3*sqrt(13))/2 and F(n) is the fractional part of (1 + sqrt(13))*n/2. Let D(g,h) be the term in row g and column h of the array to be defined:
D(1,1) = 1; D(1,2) = f(1); and D(1,h) = 11*D(1,h-1) - D(1,h-2) for h >= 3.
For arbitrary g >= 1, once row g is defined, define D(g+1,1) = least positive integer not in rows 1,2,...,g; D(g+1,2) = f(D(g+1,1)); and D(g+1,h) = 11*D(g+1,h-1) - D(g+1,h-2) for h >= 3. All rows after row 1 are thus inductively defined. [Corrected using Conjecture 2 in Kimberling (2007) by Petros Hadjicostas, Jul 07 2020]
Extensions
Name edited by Petros Hadjicostas, Jul 07 2020
More terms from Michel Marcus, Jul 09 2020
Comments