cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A120917 Central terms of triangle A120914 (cascadence of (1+2x)^2).

Original entry on oeis.org

1, 4, 32, 212, 1504, 10848, 79696, 596160, 4520000, 34673940, 268538048, 2096374656, 16475970896, 130234435648, 1034568731408, 8254368150320, 66112337392256, 531345216883584, 4283682906179728, 34632004320564416
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A,F=1+4*x+4*x^2,d=2,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),n,y)}

A120918 Row sums of triangle A120914 (cascadence of (1+2x)^2).

Original entry on oeis.org

1, 12, 124, 1212, 11512, 107544, 994236, 9128024, 83400856, 759387964, 6896903064, 62519804504, 565914425336, 5116780986152, 46223426993576, 417279346904792, 3764890593799336, 33953608251139560, 306100904240342268
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A,F=1+4*x+4*x^2,d=2,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); sum(k=0,2*n,polcoeff(polcoeff(A,n,x),k,y))}

Formula

G.f.: A(x) = H(x)*(1-x)/(1-9*x), where H(x) is the g.f. of A120915: H(x) = C(2x)^2*H(x*C(2x)^4) and C(x) is the g.f. of A000108 (Catalan).

A120915 G.f. satisfies: A(x) = C(2x)^2 * A(x^3*C(2x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 4, 20, 116, 720, 4656, 30996, 210896, 1459536, 10239796, 72651184, 520328112, 3756512912, 27307671040, 199705789248, 1468209751856, 10844681408064, 80437588353600, 598867568439828, 4473784063109904, 33524058847464912
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Comments

Column 0 of triangle A120914 (cascadence of (1+2x)^2).

Examples

			A(x) = 1 + 4*x + 20*x^2 + 116*x^3 + 720*x^4 + 4656*x^5 + 30996*x^6 +...
= C(2x)^2 * A(x^3*C(2x)^4) where
C(2x) = 1 + 2*x + 8*x^2 + 40*x^3 + 224*x^4 + 1344*x^5 + 8448*x^6 +...
and C(x) is g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
		

Crossrefs

Cf. A120914, A120916 (square-root), A120917, A120918; A000108; variants: A092684, A092687, A120895, A120899, A120920.

Programs

  • PARI
    {a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+4*x+4*x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}

A120916 G.f. satisfies: A(x) = C(2x)*A(x^3*C(2x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 2, 8, 42, 244, 1504, 9656, 63856, 431872, 2972778, 20756036, 146627648, 1046060836, 7525452296, 54530660832, 397628393728, 2915496099136, 21481907631872, 158975372309176, 1181109256858096, 8806197969093184
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Comments

Self-convolution equals A120915, which equals column 0 of triangle A120914 (cascadence of (1+2x)^2).

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+2*x,C=(1/x*serreverse(x/(1+4*x+4*x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}
Showing 1-4 of 4 results.