A120928 Number of "ups" and "downs" in the permutations of [n] if either a previous counted "up" ("down") or a "void" precedes an "up" ("down") which then will be counted also.
2, 8, 44, 280, 2040, 16800, 154560, 1572480, 17539200, 212889600, 2794176000, 39437798400, 595718323200, 9589612032000, 163895187456000, 2964061900800000, 56554301067264000, 1135354270482432000, 23923536413736960000, 527939735774330880000
Offset: 2
Examples
[1, 2, 3, 4], "ups"=3, "downs"=0; [1, 2, 4, 3], "ups"=2, "downs"=0; [1, 3, 2, 4], "ups"=2, "downs"=0; [1, 3, 4, 2], "ups"=2, "downs"=0; [1, 4, 2, 3], "ups"=2, "downs"=0; [1, 4, 3, 2], "ups"=1, "downs"=0; [2, 1, 3, 4], "ups"=0, "downs"=1; [2, 1, 4, 3], "ups"=0, "downs"=2; [2, 3, 1, 4], "ups"=2, "downs"=0; [2, 3, 4, 1], "ups"=2, "downs"=0; [2, 4, 1, 3], "ups"=2, "downs"=0; [2, 4, 3, 1], "ups"=1, "downs"=0; [3, 1, 2, 4], "ups"=0, "downs"=1; [3, 1, 4, 2], "ups"=0, "downs"=2; [3, 2, 1, 4], "ups"=0, "downs"=2; [3, 2, 4, 1], "ups"=0, "downs"=2; [3, 4, 1, 2], "ups"=2, "downs"=0; [3, 4, 2, 1], "ups"=1, "downs"=0; [4, 1, 2, 3], "ups"=0, "downs"=1; [4, 1, 3, 2], "ups"=0, "downs"=2; [4, 2, 1, 3], "ups"=0, "downs"=2; [4, 2, 3, 1], "ups"=0, "downs"=2; [4, 3, 1, 2], "ups"=0, "downs"=2; [4, 3, 2, 1], "ups"=0, "downs"=3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..400
Programs
-
Maple
a:= n-> ceil(n!*(3*n-1)/6): seq(a(n), n=2..30); # Alois P. Heinz, Apr 21 2012
Formula
E.g.f.: -(6+6*x^2-4*x^3+x^4)/(-3+12*x-18*x^2+12*x^3-3*x^4). - Thomas Wieder, May 02 2009
a(2) = 2, a(n) = n! * (3*n - 1) / 6 for n > 2. - Jon E. Schoenfield, Apr 18 2010
Extensions
4 more terms from R. J. Mathar, Aug 25 2008
More terms from Alois P. Heinz, Apr 21 2012
Comments