cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120940 Alternating sum of the Fibonacci numbers multiplied by their (combinatorial) indices.

Original entry on oeis.org

0, 1, 3, 6, 14, 26, 52, 95, 177, 318, 572, 1012, 1784, 3117, 5423, 9382, 16170, 27758, 47500, 81035, 137885, 234046, 396408, 670056, 1130544, 1904281, 3202587, 5378310, 9020102, 15109058, 25279012, 42248567, 70537929, 117657342, 196076468, 326485852
Offset: 0

Views

Author

Marcello M. Herreshoff (m(AT)marcello.gotdns.com), Jul 18 2006

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2*z^2 + z)/((z + 1)*(z^2 + z - 1)^2), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
    LinearRecurrence[{1,3,-1,-3,-1},{0,1,3,6,14},40] (* Harvey P. Dale, Apr 21 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x) / ((1 + x)*(1 - x - x^2)^2) + O(x^40))) \\ Colin Barker, Apr 03 2019

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*k*f(k) also, when n >= 3, a(n) = nf(n-1) + f(n-3) + (-1)^n where f(n) = F(n+1).
a(n) = (-1)^n+A000045(n)-A001629(n+2)+3*A001629(n+1). - R. J. Mathar, Jul 11 2011 [Corrected by Alan Michael Gómez Calderón, Jul 23 2025]
From Colin Barker, Apr 03 2019: (Start)
G.f.: x*(1 + 2*x) / ((1 + x)*(1 - x - x^2)^2).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 3*a(n-4) - a(n-5) for n>4.
(End)