A120947 a(n) = smallest m such that n-th prime divides Pell(m).
2, 4, 3, 6, 12, 7, 8, 20, 22, 5, 30, 19, 10, 44, 46, 27, 20, 31, 68, 70, 36, 26, 84, 44, 48, 51, 34, 108, 55, 28, 126, 132, 17, 140, 75, 150, 79, 164, 166, 87, 36, 91, 190, 96, 9, 18, 212, 74, 76, 23, 116, 14, 40, 84, 64, 262, 15, 270, 139, 140, 284, 49, 308, 310, 78, 159, 332
Offset: 1
Keywords
Examples
a(4)=6 because the 6th Pell number, 70, is the first that is divisible by the 4th prime (=7).
Links
- Alois P. Heinz and Robert Israel, Table of n, a(n) for n = 1..10000 (n = 1 .. 1000 from Alois P. Heinz)
- J. L. Schiffman, Exploring the Fibonacci sequence of order two with CAS technology, Paper C027, Electronic Proceedings of the Twenty-fourth Annual International Conference on Technology in Collegiate Mathematics, Orlando, Florida, March 22-25, 2012.
Crossrefs
Programs
-
Maple
p:= proc(n) p(n):=`if`(n<2, n, 2*p(n-1)+p(n-2)) end: a:= proc(n) local k, t; t:= ithprime(n); for k while irem(p(k), t)>0 do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Mar 28 2014 f:= proc(n) local p, r, G; uses numtheory; p:= ithprime(n); if quadres(2,p)=1 then r:= msqrt(2,p); order(-3-2*r, p) else G:= GF(p, 2, r^2-2); G:-order( G:-ConvertIn(-3-2*r)); fi end proc: 2, seq(f(n), n=2..100); # Robert Israel, Aug 28 2015
-
Mathematica
p[n_] := p[n] = If[n<2, n, 2*p[n-1] + p[n-2]]; a[n_] := Module[{k, t}, t = Prime[n]; For[k=1, Mod[p[k], t]>0, k++]; k]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 16 2015, after Alois P. Heinz *)
-
PARI
a(n,p=prime(n))=my(cur=Mod(1,p),last,m=1); while(cur, m++; [last,cur]=[cur,2*cur+last]); m \\ Charles R Greathouse IV, Jun 16 2015
Comments