cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120947 a(n) = smallest m such that n-th prime divides Pell(m).

Original entry on oeis.org

2, 4, 3, 6, 12, 7, 8, 20, 22, 5, 30, 19, 10, 44, 46, 27, 20, 31, 68, 70, 36, 26, 84, 44, 48, 51, 34, 108, 55, 28, 126, 132, 17, 140, 75, 150, 79, 164, 166, 87, 36, 91, 190, 96, 9, 18, 212, 74, 76, 23, 116, 14, 40, 84, 64, 262, 15, 270, 139, 140, 284, 49, 308, 310, 78, 159, 332
Offset: 1

Views

Author

Ralf Stephan, Aug 19 2006

Keywords

Comments

For all divisors d of n>0, Pell(d) divides Pell(n), so if a prime divides the n-th Pell number, so does it for all multiples of n.
For n > 1, a(n) is the multiplicative order of -3-2*sqrt(2), in GF(prime(n)) if 2 is a quadratic residue (mod prime(n)) or GF(prime(n)^2) otherwise. Thus a(n) divides prime(n)-1 if prime(n) == 1 or 7 (mod 8), i.e. n is in A024704, and a(n) divides prime(n)+1 if prime(n) == 3 or 5 (mod 8), i.e. n is 2 or is in A024705. - Robert Israel, Aug 28 2015

Examples

			a(4)=6 because the 6th Pell number, 70, is the first that is divisible by the 4th prime (=7).
		

Crossrefs

Cf. A000129 (Pell numbers), A001602 (equivalent sequence with Fibonacci numbers), A239111, A024704, A024705.

Programs

  • Maple
    p:= proc(n) p(n):=`if`(n<2, n, 2*p(n-1)+p(n-2)) end:
    a:= proc(n) local k, t; t:= ithprime(n);
          for k while irem(p(k), t)>0 do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 28 2014
    f:= proc(n)
    local p, r, G;
    uses numtheory;
    p:= ithprime(n);
    if quadres(2,p)=1 then
       r:= msqrt(2,p);
       order(-3-2*r, p)
    else
       G:= GF(p, 2, r^2-2);
       G:-order( G:-ConvertIn(-3-2*r));
    fi
    end proc:
    2, seq(f(n), n=2..100); # Robert Israel, Aug 28 2015
  • Mathematica
    p[n_] := p[n] = If[n<2, n, 2*p[n-1] + p[n-2]]; a[n_] := Module[{k, t}, t = Prime[n]; For[k=1, Mod[p[k], t]>0, k++]; k]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 16 2015, after Alois P. Heinz *)
  • PARI
    a(n,p=prime(n))=my(cur=Mod(1,p),last,m=1); while(cur, m++; [last,cur]=[cur,2*cur+last]); m \\ Charles R Greathouse IV, Jun 16 2015