cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246556 a(n) = smallest prime which divides Pell(n) = A000129(n) but does not divide any Pell(k) for k

Original entry on oeis.org

2, 5, 3, 29, 7, 13, 17, 197, 41, 5741, 11, 33461, 239, 269, 577, 137, 199, 37, 19, 45697, 23, 229, 1153, 1549, 79, 53, 113, 44560482149, 31, 61, 665857, 52734529, 103, 1800193921, 73, 593, 9369319, 389, 241, 1746860020068409, 4663, 11437, 43, 6481, 47, 3761, 97, 293, 45245801, 101, 22307, 68480406462161287469, 7761799, 109, 1535466241
Offset: 2

Views

Author

Eric Chen, Nov 15 2014

Keywords

Comments

First differs from A264137 (Largest prime factor of the n-th Pell number) at n=17; see Example section. - Jon E. Schoenfield, Dec 10 2016

Examples

			a(2) = 2 because Pell(2) = 2 and Pell(k) < 2 for k < 2.
a(4) = 3 because Pell(4) = 12 = 2^2 * 3, but 2 is not a primitive prime factor since Pell(2) = 2, so therefore 3 is the primitive prime factor.
a(5) = 29 because Pell(5) = 29, which is prime.
a(6) = 7 because Pell(6) = 70 = 2 * 5 * 7, but neither 2 nor 5 is a primitive prime factor, so therefore 7 is the primitive prime factor.
a(17) = 137 because Pell(17) = 1136689 = 137 * 8297, and both of them are primitive factors, we choose the smallest. (Pell(17) is the smallest Pell number with more than one primitive prime factor.)
		

Crossrefs

Cf. A001578 (for Fibonacci(n)), A000129 (Pell numbers), A008555, A086383, A096650, A120947, A175181, A214028, A264137.

Programs

  • Mathematica
    prms={}; Table[f=First/@FactorInteger[Pell[n]]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 36}]

Formula

a(n) >= 2 for all n >= 2, by Carmichael's theorem. - Jonathan Sondow, Dec 08 2017

Extensions

Edited by N. J. A. Sloane, Nov 29 2014
Terms up to a(612) in b-file added by Sean A. Irvine, Sep 23 2019
Terms a(613)-a(630) in b-file added by Max Alekseyev, Aug 26 2021

A239111 Smallest Pell number (see A000129) divisible by n-th prime.

Original entry on oeis.org

2, 12, 5, 70, 13860, 169, 408, 15994428, 93222358, 29, 107578520350, 6625109, 2378, 24580185800219268, 143263821649299118, 7645370045, 15994428, 259717522849, 37774750930342781945186508, 220167382952941249990598278, 21300003689580, 3166815962, 50305164660422142002238655969020
Offset: 1

Views

Author

N. J. A. Sloane, Mar 27 2014

Keywords

Crossrefs

Cf. A120947.

Programs

  • Maple
    p:= proc(n) p(n):=`if`(n<2, n, 2*p(n-1)+p(n-2)) end:
    a:= proc(n) local k, t; t:= ithprime(n);
          for k while irem(p(k), t)>0 do od; p(k)
        end:
    seq(a(n), n=1..23);  # Alois P. Heinz, Mar 28 2014
  • Mathematica
    p[n_] := p[n] = If[n<2, n, 2*p[n-1] + p[n-2]]; a[n_] := With[{t = Prime[n]} , For[k=1, Mod[p[k], t] > 0, k++]; p[k]]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Feb 14 2016, after Alois P. Heinz *)
Showing 1-2 of 2 results.