A120960 Pythagorean prime powers.
5, 13, 17, 25, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 125, 137, 149, 157, 169, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 289, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593
Offset: 1
Keywords
Examples
A001844(1) = 5 is divisible by 5, A001844(3) = 25 is divisible by = 5 and 1+3+1=5, so 5 is a member. A001844(2) = 13 is divisible by = 13, A001844(10) = 221 is divisible by = 13 and 2+10+1=13 so 13 is a member.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
- A. Baliga and K. J. Horadam, Cocyclic Hadamard matrices over Z_t X Z^2_2, Australas. J. Combin. 11(1995), 123-134.
- Eric Weisstein's World of Mathematics, MathWorld, Centered Square Number.
Crossrefs
Programs
-
Excel
Generate the indices with: =if(mod(1+2*row()*(row()+1);4*column()+1)=0;row();") Then sum the first two indices if it equals the column + 1. - Mats Granvik, Oct 16 2007
-
Haskell
import Data.List (elemIndices) a120960 n = a120960_list !! (n-1) a120960_list = map (+ 1) $ elemIndices 1 a024362_list -- Reinhard Zumkeller, Dec 02 2012
Comments