cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120987 Triangle read by rows: T(n,k) is the number of ternary words of length n with k strictly increasing runs (0 <= k <= n; for example, the ternary word 2|01|12|02|1|1|012|2 has 8 strictly increasing runs).

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 1, 16, 10, 0, 0, 15, 51, 15, 0, 0, 6, 90, 126, 21, 0, 0, 1, 77, 357, 266, 28, 0, 0, 0, 36, 504, 1107, 504, 36, 0, 0, 0, 9, 414, 2304, 2907, 882, 45, 0, 0, 0, 1, 210, 2850, 8350, 6765, 1452, 55, 0, 0, 0, 0, 66, 2277, 14355, 25653, 14355, 2277, 66, 0, 0, 0, 0, 12
Offset: 0

Views

Author

Emeric Deutsch, Jul 23 2006

Keywords

Comments

Sum of entries in row n is 3^n (A000244).
Sum of entries in column k is A099464(k+1) (a trisection of the tribonacci numbers).
Row n contains 1 + floor(2n/3) nonzero terms.
T(n,n) = (n+1)*(n+2)/2 (the triangular numbers (A000217)).
Sum_{k=0..n} k*T(n,k) = (2n+1)*3^(n-1) = 3*A081038(n-1) for n >= 1.
T(n,k) = A120987(n,n-k).

Examples

			T(5,2) = 6 because we have 012|01, 012|02, 012|12, 01|012, 02|012 and 12|012 (the runs are separated by |).
Triangle starts:
  1;
  0,   3;
  0,   3,   6;
  0,   1,  16,  10;
  0,   0,  15,  51,  15;
  0,   0,   6,  90, 126,  21;
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 24, p. 154.

Crossrefs

Nb(s,2,q) = A027907(q,s). - Giuliano Cabrele, Dec 11 2015

Programs

  • Maple
    G:=1/(1-3*t*z-3*t*(1-t)*z^2-t*(1-t)^2*z^3): Gser:=simplify(series(G,z=0,33)): P[0]:=1: for n from 1 to 13 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[Sum[(-1)^j*Binomial[n + 1, j]*Binomial[3 k - 3 j, n], {j, 0, k}], {n, 0, 10}, {k, 0, n}]] (* G. C. Greubel, Dec 20 2015 *)
  • MuPAD
    // binomial c. defined as in linked document
    Cb:=(x,m)->if(0<=m and is(m in Z), binomial(x,m), 0):
    // closed formula derived and proved in the linked document
    // Qsc(r,q,m) with r=2
    T(n,k):=(n,k)->_plus((-1)^(k-j)*Cb(n+1,k-j)*Cb(3*j, n)$j=0..k):
    // Giuliano Cabrele, Dec 11 2015

Formula

T(n,k) = trinomial(n+1,3n-3k+2) = trinomial(n+1,3k-n) (conjecture).
G.f.: 1/(1-3tz-3t(1-t)z^2-t(1-t)^2*z^3).
Can anyone prove the conjecture (either from the g.f. or combinatorially from the definition)?
From Giuliano Cabrele, Mar 02 2008: (Start)
The conjecture is compatible with the g.f., which can be rewritten as (1-t)/(1-t(1+(1-t)z)^3) and expanded to give T(n,k) = Sum_{j=0..k} (-1)^(k-j)*C(3j, n)*C(n+1, k-j) = Sum_{j=0..k} (-1)^j*C(n+1,j)*C(3k-3j,n) = trinomial(n+1,3k-n) = A027907(n+1,3k-n).
Also (1-t)/(1-t(1+(1-t)z)^2) equals the g.f. for the case of binary words, A119900, where Sum_{j=0..k} (-1)^(k-j)*C(2j,n)*C(n+1,k-j) = C(n+1,2k-n). Changing the exponent to 1 gives 1/(1-zt), the g.f. for the case of unary words, the expansion coefficients of which can be written as Kronecker delta(k-n)^(n+1) = Sum_{j=0..k} (-1)^(k-j)*C(j, n)*C(n+1,k-j).
So the conjecture shifts to that the g.f. is (1-t)/(1-t(1+(1-t)z)^m) and coefficients T(m,n,k) = Sum_{j=0..k} (-1)^(k-j)*C(mj,n)*C(n+1, k-j) may apply to the general case of m-ary words. (End)
Sum_{k=0..n} T(n,k) *(-1)^(n-k) = A157241(n+1). - Philippe Deléham, Oct 25 2011
The generalized conjecture above can in fact be proved, as described in the file "Words Partitioned according to Number of Strictly Increasing Runs" linked above. - Giuliano Cabrele, Dec 11 2015