A121017 Stirling transform of A104600.
1, 1, 6, 65, 1125, 28132, 950649, 41475961, 2259756900, 149874308367, 11858161118925, 1101069785060610, 118366544943589215, 14564702419742606497, 2031425158227034739646, 318472106732688712103885, 55708816671530680003669185, 10803156636116962310987233404
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..273
Programs
-
Maple
a:= n-> combinat[bell](n)*add(Stirling2(n, k)*k!, k=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, Sep 30 2006
-
Mathematica
Table[BellB[n]*Sum[StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 17}] (* James C. McMahon, Oct 11 2024 *)
Formula
a(n) = (1/(2e)) * Sum_{r,s >= 0} (r*s)^n / (2^r*s!).
Extensions
More terms from Zerinvary Lajos, Sep 30 2006