cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121081 Number of partitions of n into parts with at most one 1 and at most one 2.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 8, 11, 14, 18, 24, 30, 38, 49, 61, 76, 96, 118, 146, 181, 221, 270, 331, 401, 486, 589, 709, 852, 1025, 1225, 1463, 1746, 2075, 2463, 2922, 3453, 4077, 4808, 5656, 6644, 7798, 9130, 10678, 12475, 14547, 16942, 19714, 22898, 26570, 30798
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 11 2006

Keywords

Comments

a(n) is also the number of partitions of n with no part equal to 2 or 4. [From Shanzhen Gao, Oct 28 2010]

Examples

			a(8)=#{8,7+1,6+2,5+3,5+2+1,4+4,4+3+1,3+3+2}=8;
a(9)=#{9,8+1,7+2,6+3,6+2+1,5+4,5+3+1,4+4+1,4+3+2,3+3+3,3+3+2+1}=11.
		

Crossrefs

Cf. A027336.

Formula

a(n) = A121659(n) + A008483(n-3) for n>2. - Reinhard Zumkeller, Aug 14 2006
G.f.: (1+x)*(1+x^2)/Product_{k>=3} (1-x^k). - Vladeta Jovovic, Aug 13 2006
a(n) = A000041(n)-A000041(n-2)-A000041(n-4)+A000041(n-6), n>5. - Vladeta Jovovic, Aug 13 2006
Given by p(n)-p(n-2)-p(n-4)+p(n-6) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (3^(3/2) * n^2). - Vaclav Kotesovec, Jun 02 2018