A121101 Catapolyoctagons (see Cyvin et al. for precise definition).
1, 1, 3, 9, 39, 169, 819, 3969, 19719, 97969, 489219, 2442969, 12211719, 61042969, 305199219, 1525917969, 7629511719, 38147167969, 190735449219, 953675292969, 4768374511719, 23841862792969, 119209304199219, 596046472167969, 2980232312011719, 14901161315917969, 74505806335449219
Offset: 1
Keywords
References
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134(1) (1997), 55-70; see Table I (p. 58).
Links
- J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Isomer enumeration of polygonal systems representing polyclic conjugated hydrocarbons: unbalanced catacondensed systems with tetragons and q-gons, J. Molec. Struct. (Theochem), 364 (1996), 1-13.
Programs
-
Magma
[1] cat [(1/4)*(1+5^(n-2)+2*(2-(-1)^n)*5^((n div 2)-1)): n in [2..30]]; // Vincenzo Librandi, Jul 26 2019
-
Mathematica
Join[{1}, Table[(1/4) (1 + 5^(r - 2) + 2 (2 - (-1)^r) 5^(Floor[r/2] - 1)), {r, 2, 30}]] (* Vincenzo Librandi, Jul 26 2019 *)
-
Sage
def A121101_list(prec): P.
= PowerSeriesRing(ZZ, default_prec=prec) def g(x): return x*(10*x^4-21*x^3+3*x^2+5*x-1)/((x-1)*(5*x-1)*(5*x^2-1)) return P(g(x)).list() print(A121101_list(27)) # Peter Luschny, Jul 26 2019
Formula
G.f.: x*(10*x^4 - 21*x^3 + 3*x^2 + 5*x - 1) / ((x - 1)*(5*x - 1)*(5*x^2 - 1)). - Colin Barker, Aug 29 2013
a(r) = (1/4) * (1 + 5^(r-2) + 2 * (2-(-1)^r) * 5^(floor(r/2) - 1)) for r >= 2. - Petros Hadjicostas, Jul 24 2019
Extensions
More terms from Petros Hadjicostas, Jul 24 2019 using the "master formula" in the references.
Comments