cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121162 Number of separated bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).

Original entry on oeis.org

1, 3, 13, 41, 141, 440, 1391, 4244, 12913, 38651, 115082, 339646, 997709, 2915010, 8485573, 24612666, 71191458, 205393819, 591330506, 1699226719, 4874925420, 13965498369, 39957144189, 114193222891, 326023307022, 929958622555, 2650483647976, 7548608038736
Offset: 6

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

Comments

Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of equal length without any shared node and all nodes having degree at most 4. - Andrew Howroyd, May 25 2018

Crossrefs

Programs

  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    C1(n)={sum(k=1, n\4, d1^(4*k) + 2*d1^(2*k)*d2^k + d2^(2*k))*(1 + d1^2)/(8*(1-d1))}
    C2(n)={sum(k=1, n\4,  2*(d2^(2*k) + d4^k)*(1 + d2))*(1+d1)/(8*(1-d2))}
    seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018

Extensions

More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 25 2018