A121331 Number of bridged bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).
1, 2, 6, 15, 39, 99, 258, 671, 1762, 4657, 12372, 33036, 88590, 238483, 644045, 1744542, 4737341, 12894158, 35165994, 96083192, 262951511, 720685274, 1977846334, 5434588909, 14949284828, 41163690109, 113451949753, 312955174089, 863965424349, 2386874582238
Offset: 5
Keywords
Examples
From _Andrew Howroyd_, May 25 2018: (Start) Illustration of graphs for n=5 and n=6: o o--o o /|\ /|\ /|\ o o o o o o o o o--o \|/ \|/ \|/ o o o . Illustration of graphs for n=7: o--o o--o--o o--o o o o o /|\ /|\ /|\ /|\ /|\ /|\ / o o o o o o o o o--o o o o o o o--o o o o \|/ \|/ \|/ / \|/ \ \|/ | \|/ \ o--o o o o o o o o o o (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 5..200
- Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
Programs
-
Mathematica
G[n_] := Module[{g}, g[] = 0; Do[g[x] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]]; C1[n_] := Sum[(d1^(3*k)+3*d1^k*d2^k + 2*d3^k), {k, 1, Quotient[n, 3]}]/12; C2[n_] := Sum[(d1^Mod[k, 2]*d2^Quotient[k, 2])^3 + 3*d1^Mod[k, 2]* d2^(Quotient[k, 2] + k) + 2*d3^Mod[k, 2]*d6^Quotient[k, 2], {k, 1, Quotient[n, 3]}]/12; seq[n_] := Module[{s, d, g}, s = G[n]; d = x*(s^2 + (s /. x -> x^2))/2; g[p_, e_] := Normal[(p+O[x]^(Quotient[n, e]+1))] /. x :> x^e; g[s, 1]^2* (C1[n-2] /. Thread[{d1, d2, d3} :> {g[d, 1], g[d, 2], g[d, 3]}]) + g[s, 2]*(C2[n-2] /. Thread[{d1, d2, d3, d6} :> {g[d, 1], g[d, 2], g[d, 3], g[d, 6]}]) + O[x]^n] // CoefficientList[#, x]& // Drop[#, 3]&; seq[33] (* Jean-François Alcover, Sep 08 2019, after Andrew Howroyd *)
-
PARI
\\ here G is A000598 as series G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g} C1(n)={sum(k=1, n\3, (d1^(3*k) + 3*d1^k*d2^k + 2*d3^k))/12} C2(n)={sum(k=1, n\3, (d1^(k%2)*d2^(k\2))^3 + 3*d1^(k%2)*d2^(k\2+k) + 2*d3^(k%2)*d6^(k\2))/12} seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))} \\ Andrew Howroyd, May 25 2018
Formula
a(n) ~ c * d^n / sqrt(n), where d = 1/A261340 = 2.815460033176150746526616778..., c = 0.0064202170754... . - Vaclav Kotesovec, Sep 08 2019
Extensions
Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(24) corrected and terms a(26) and beyond from Andrew Howroyd, May 25 2018
Comments