A121179 Related to enumeration of alkane systems - see reference for precise definition.
1, 1, 1, 4, 19, 91, 476, 2586, 14421, 82225, 476913, 2804880, 16689036, 100276894, 607588840, 3708251888, 22776251835, 140676848445, 873210347555, 5444307431052, 34080036632565, 214104150405915, 1349504948018208, 8531467913710560, 54083412667272300, 343715994386622918, 2189505804590364876
Offset: 0
Keywords
Links
- S. J. Cyvin, Algebraic solution for the numbers of staggered conformers of alkanes, J. Math. Chem. 17 (1995), 291-293.
- S. J. Cyvin, J. Brunvoll, B. N. Cyvin, and W. Lüttke, Enumeration of the staggered conformers of alkanes, Zeitschrift für Naturforschung A 50(9) (1995), 857-863.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and Jianji Wang, Enumeration of staggered conformers of alkanes and monocyclic cycloalkanes, J. Molec. Struct. 445 (1998), 127-137.
- S. J. Cyvin, Jianji Wang, J. Brunvoll, Shiming Cao, Ying Li, B. N. Cyvin, and Yugang Wang, Staggered conformers of alkanes: complete solution of the enumeration problem, J. Molec. Struct. 413-414 (1997), 227-239.
- F. Hering et al., The enumeration of stack polytopes and simplicial clusters, Discrete Math., 40 (1982), 203-217.
- Jianji Wang, Shiming Cao, and Ying Li, An algebraic solution for the numbers of staggered conformers of alkanes, J. Math. Chem. 20 (1996), 211-212.
Programs
-
Maple
A121179 := proc(n) if n = 0 then return 1; elif modp(n,3) <> 1 then A001764(n) ; else A001764(n)+2*A001764((n-1)/3) ; end if; %/3 ; end proc: seq(A121179(n),n=0..30) ; # R. J. Mathar, Jul 31 2019
-
Mathematica
b[n_] := Binomial[3n, n]/(2n + 1); a[n_] := If[n == 0, 1, If[Mod[n, 3] != 1, b[n], b[n] + 2 b[(n-1)/3]]/3]; a /@ Range[0, 30] (* Jean-François Alcover, Apr 01 2020 *)
Formula
From Petros Hadjicostas, Jul 24 2019: (Start)
We have a(0) = 1, while for n >= 1 we have
a(n) = (1/3) * A001764(n) = binomial(3*n, n)/(3*(2*n + 1)) if n !== 1 (mod 3), and
G.f.: 1 + (x/3) * (B(x)^3 + 2*B(x^3)), where B(x) is the g.f. of sequence A001764, which satisfies the functional equation B(x) = 1 + x*B^3(x). (It also satisfies the equation B(x) = 1/(1 - x*B^2(x)).) We have
B(x) = (2/sqrt(3*x)) * sin((1/3) * arcsin(sqrt(27*x/4))).
(End)
The g.f. for this sequence is F(3,t) on page 209 of the Hering link. - Robert A. Russell, May 12 2024
Extensions
More terms from Petros Hadjicostas, Jul 24 2019
Comments