cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121230 First Hadamard-Sylvester matrix self -similar matrix based on the Padovan/ Minimal Pisot 3 X 3 matrix as an 9 X 9 matrix: Characteristic Polynomial:1 - x - x^3 - x^4 - x^5 + 3 x^6 + 2 x^7 - x^9.

Original entry on oeis.org

0, 13, 5, 22, 42, 54, 126, 192, 347, 631, 1056, 1914, 3320, 5814, 10276, 17921, 31549, 55338, 97026, 170454, 298914, 524684, 920815, 1615647, 2835660, 4975898, 8732160, 15324202, 26891432, 47191909, 82815621, 145331022, 255039162
Offset: 1

Views

Author

Roger L. Bagula, Aug 13 2006

Keywords

Comments

As far as I can tell by searching the Internet, this matrix and this approach to sequences is entirely new and unique. The second of these matrices at 81 X 81 gives a new fractal that is Cantor dust like. aa = Table[M[[n, m]]*M[[i, j]], {n, 1, 9 }, {m, 1, 9}, {i, 1, 9}, {j, 1, 9}]; M2 = Flatten[Table[{Flatten[Table[aa[[ n, m]][[1, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[n, m]][[2, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[3, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[4, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[5, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[n, m]][[6, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[7, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[8, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[9, i]], {n, 1, 9}, {i, 1, 9}]]}, {m, 1, 9}], 1]; ListDensityPlot[M2, Mesh -> False]

Crossrefs

Cf. A000931.

Programs

  • Mathematica
    Clear[t, M, a, v, a0] t[n_, m_] := {{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}[[n, m]] a0 = Table[t[n, m]*t[i, j], {n, 1, 3}, {m, 1, 3}, {i, 1, 3}, {j, 1, 3}]; M = Flatten[Table[{Flatten[Table[a0[[ n, m]][[1, i]], {n, 1, 3}, {i, 1, 3}]], Flatten[Table[a0[[n, m]][[2, i]], {n, 1, 3}, {i, 1, 3}]], Flatten[Table[a0[[n, m]][[3, i]], {n, 1, 3}, {i, 1, 3}]]}, {m, 1, 3}], 1] v[1] = Table[Fibonacci[n], {n, 0, 8}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] Det[M - x*IdentityMatrix[9]] Factor[%] aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[9]] == 0, x][[n]], {n, 1, 9}] Abs[aaa] a1 = Table[N[a[[n]]/a[[n - 1]]], {n, 7, 50}] ListDensityPlot[M, Mesh -> False]

Formula

M={{0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, { 0, 0, 0, 0, 0, 0, 1, 1, 0}, {0, 1, 0, 0, 0, 0, 0, 1, 0}, { 0, 0, 1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 1, 1, 0}, { 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, { 0, 0, 0, 1, 1, 0, 0, 0, 0}} v[1] = Table[Fibonacci[n], {n, 0, 8}] v[n_] := v[n] = M.v[n - 1] a(n) = v[n][[1]]
G.f.: x^2(13-8x+4x^2+2x^3-2x^4)/((1-2x+x^2-x^3)(1+x-x^3)). a(n) = a(n-1) +a(n-2) +a(n-3) -a(n-4) +a(n-5) -a(n-6). Partial fraction decomposition yield decomposition in terms of A005314 and A050935. [From R. J. Mathar, Nov 26 2008]