A121251 Number of labeled graphs without isolated vertices and with n edges.
1, 1, 6, 62, 900, 16824, 384668, 10398480, 324420840, 11472953760, 453518054216, 19815916826160, 948348447031440, 49334804947402800, 2771902062752597520, 167281797371598801136, 10791777047497882651296, 741135302021991803931360, 53983717302568691555767360
Offset: 0
References
- E. A. Bender, E. R. Canfield and B. D. McKay, The asymptotic number of labeled
Links
- E. A. Bender and E. R. Canfield and B. D. McKay, The asymptotic number of labeled graphs with n vertices, q edges and no isolated vertices, preprint, 1996.
- E. A. Bender, E. R. Canfield and B. D. McKay, The asymptotic number of labeled graphs with n vertices, q edges and no isolated vertices, J Combinatorial Theory, Series A, 80 (1997) 124-150.
- Kassahun H. Betre, Yan X. Zhang, and Carter Edmond, Pure Simplicial and Clique Complexes with a Fixed Number of Facets, arXiv:2411.12945 [math.CO], 2024. See p. 23.
- A. N. Bhavale, B. N. Waphare, Basic retracts and counting of lattices, Australasian J. of Combinatorics (2020) Vol. 78, No. 1, 73-99.
Crossrefs
Cf. A006129.
Formula
a(n) = Sum_{m>=0} binomial(binomial(m,2),n)/2^(m+1). Column sums of A054548.
Extensions
More terms from Max Alekseyev, Aug 23 2006
Comments