A121263
Descending dungeons: see Comments lines for definition.
Original entry on oeis.org
10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 65, 87, 135, 239, 463, 943, 1967, 4143, 8751, 18479, 38959, 103471, 306223, 942127, 2932783, 9153583, 28562479, 89028655, 277145647, 861652015, 2675637295, 10173443119, 41132125231, 168836688943, 695134284847
Offset: 10
For example,
10
..11
....12
......13
........14
..........15
............16
..............17
................18
..................19
....................20
......................21
........................22
..........................23
is equal to 239.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- N. J. A. Sloane, Table of n, a(n) for n = 10..109
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, and N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
- Brady Haran and N. J. A. Sloane, Dungeon Numbers, Numberphile video (2020). (extra)
-
M:=100; a:=list(10..M): a[10]:=10: lprint(10,a[10]); for n from 11 to M do b:=n; for i from n-1 by -1 to 11 do t1:=convert(i,base,10); b:=add(t1[j]*b^(j-1),j=1..nops(t1)): od: a[n]:=b; lprint(n,a[n]); od: # N. J. A. Sloane
asubb := proc(a,b) local t1; t1:=convert(a,base,10); add(t1[j]*b^(j-1),j=1..nops(t1)): end; # asubb(a,b) evaluates a as if it were written in base b # N. J. A. Sloane
-
def a(n):
a_of_n = [((10 + int(i))) for i in range(n)]
while len(a_of_n) != 1:
exponent = 0
a_of_n [-2] = list(str(a_of_n [-2]))
for i in range(len(a_of_n [-2])):
a_of_n [-2] [-(i+1)] = int(a_of_n [-2] [-(i+1)])
a_of_n [-2] [-(i+1)] *= ((a_of_n [-1]) ** exponent)
exponent += 1
a_of_n [-2] = sum(a_of_n [-2])
a_of_n = a_of_n [:((len(a_of_n))-1)]
return (a_of_n [0])
# Noah J. Crandall, Dec 07 2020
A121863
See Comments lines for definition.
Original entry on oeis.org
16, 50, 304, 93032, 17310371214, 1498244757849709540196, 3363165974015385428987990761994364730059919325224645845292529932
Offset: 4
64_(32_16) = 64_(3*16 + 2) = 64_50 = 6*50 + 4 = 304.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
-
rebase(n,bas)={ local(resul,i) ; resul= n % 10 ; i=1 ; while(n>0, n = n \10 ; resul += (n%10)*bas^i ; i++ ; ) ; return(resul) ; } { a=16 ; print(a) ; for(n=5,12, a=2^n ; forstep(j=n,5,-1, a=rebase(2^(j-1),a) ; ) ; print1(a,",") ; ) ; } \\ R. J. Mathar, Sep 01 2006
A121864
See Comments lines for definition.
Original entry on oeis.org
16, 50, 406, 1258008, 25465014649108, 208080288305986199465852412572946560
Offset: 4
(64_32)_16 = (6*32 + 4)_16 = 196_16 = 1*256 + 9*16 + 6 = 406.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
Cf.
A121863,
A121263,
A121266,
A121264,
A121265,
A121295,
A121296,
A111050,
A121866,
A122029,
A122030.
A122030
See Comments lines for definition.
Original entry on oeis.org
16, 38, 200, 2324, 1189028, 4996371438596, 54444310605180563002616118404, 1333929961635427338189657222796065386478968915403224556066936061387348857093217691444
Offset: 4
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
A122029
See Comments lines for definition.
Original entry on oeis.org
16, 38, 200, 32768, 12918916616, 1242818253229988572210659846, 1900850177472859316749829932381453683166126327573485314289555274100802310696341510
Offset: 4
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
-
rebase(n,bas)={ local(resul,i) ; resul= n % 10 ; i=1 ; while(n>0, n = n \10 ; resul += (n%10)*bas^i ; i++ ; ) ; return(resul) ; } { a=16 ; for(p=5,10, print(a) ; a=rebase(a,2^p) ; ) ; } \\ R. J. Mathar, Sep 01 2006
Showing 1-5 of 5 results.
Comments