A121273 Number of different n-dimensional convex regular polytopes that can tile n-dimensional space.
1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(2)=3 because the plane can be tiled by equilateral triangles, squares or regular hexagons. a(3)=1 since the only platonic solid that can tile 3-dimensional space is the cube. a(4)=3 because the 4-dimensional space can be tiled by hypercubes (tesseracts), hyperoctahedra or 24-cell polytopes.
Links
- Eric Weisstein's World of Mathematics, Space-Filling Polyhedron.
- Wikipedia, Regular Polytopes.
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
Formula
a(n)=3 for n = 2 & 4. a(n)=1 for all other n.
Comments