A121307 Products of three primes of the form 3n-1 (A003627), not necessarily distinct.
8, 20, 44, 50, 68, 92, 110, 116, 125, 164, 170, 188, 212, 230, 236, 242, 275, 284, 290, 332, 356, 374, 404, 410, 425, 428, 452, 470, 506, 524, 530, 548, 575, 578, 590, 596, 605, 638, 668, 692, 710, 716, 725, 764, 782, 788, 830, 890, 902, 908, 932, 935, 956
Offset: 1
References
- J. H. Conway and R. K. Guy, The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
- Stan Wagon, "Eisenstein Primes," Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
ok[n_] := Block[{f = FactorInteger@n}, Plus @@ Last /@ f == 3 && Max@ Mod[1 + First /@ f, 3] == 0]; Select[Range@ 1000, ok] (* Giovanni Resta, Jun 12 2016 *)
-
PARI
list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\4, if(p%3==2, listput(u,p))); for(i=1,#u, for(j=i,#u, if(u[i]*u[j]^2>lim, break); for(k=j,#u, t=u[i]*u[j]*u[k]; if(t>lim, break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017
-
Python
from sympy import primerange from itertools import combinations_with_replacement as mc def aupto(limit): terms = [p for p in primerange(2, limit//4+1) if p%3 == 2] return sorted(set(a*b*c for a, b, c in mc(terms, 3) if a*b*c <= limit)) print(aupto(957)) # Michael S. Branicky, Aug 20 2021
Extensions
Definition corrected by N. J. A. Sloane, Feb 06 2008
a(37)-a(53) from Giovanni Resta, Jun 12 2016
Name edited by Antti Karttunen, Jun 13 2024
Comments