A324257
Conceited Numbers: Composite numbers that are a concatenation of their distinct prime factors with multiplicity in some order allowing overlap.
Original entry on oeis.org
735, 3792, 13377, 21372, 51375, 67335, 119911, 229912, 290912, 537975, 1341275, 1713192, 2317312, 2333772, 2971137, 3719193, 4773132, 5117695, 7237755, 7747292, 11973192, 13115375, 13731373, 16749933, 19853575, 22940075, 29090912, 29373375
Offset: 1
67335 = 3*5*67^2 formed by 67||3|||3||5 (this term is not in A083359 because two 3's are required in the concatenation).
3719193 = 3*19*71*919 formed by 3||71||9(19)||3 where 19 and 919 overlap.
A324260
Subsequence of A324257 (Conceited Numbers) where the distinct prime factors are concatenated without multiplicity.
Original entry on oeis.org
735, 3792, 1341275, 1713192, 2971137, 4773132, 13115375, 13731373, 22940075, 29373375, 31373137, 71624133, 121719472, 183171409, 221397372, 241153517, 311997175, 319953792, 331191135, 1019127375, 1147983375, 1190911909, 1453312395
Offset: 1
4773132 = 2^2 * 3^2 * 7 * 13 * 31 * 47 formed by 47||7||[3(1][3)]||2. The 6 distinct prime factors are used once each, with 3, 13 and 31 overlapping.
A324258
Subsequence of A324257 (Conceited Numbers) where the prime factors are concatenated without overlap.
Original entry on oeis.org
735, 3792, 13377, 67335, 290912, 537975, 1341275, 2333772, 5117695, 7747292, 13115375, 19853575, 22940075, 29090912, 29373375, 37723392, 52979375, 71624133, 79241575, 311997175, 319953792, 367543575, 533334375, 1019127375, 1147983375, 1734009275
Offset: 1
5117695 = 5 * 11^2 * 769, formed by 5||11||769||5. The prime factor 5 is used twice.
A306474
Composite numbers that are anagrams of the concatenation of their prime factors.
Original entry on oeis.org
735, 1255, 3792, 7236, 11913, 12955, 13175, 17276, 17482, 19075, 19276, 23535, 25105, 32104, 34112, 37359, 42175, 100255, 101299, 104392, 105295, 107329, 117067, 117873, 121325, 121904, 121932, 123544, 123678, 124483, 127417, 129595, 131832, 132565, 139925
Offset: 1
3792 is in the sequence because the concatenation of the prime distinct divisors {2, 3, 79} is 2379, anagram of 3792.
-
with(numtheory):
for n from 1 to 140000 do:
if type(n,prime)=false
then
x:=factorset(n):n1:=nops(x): s:=0:s0:=0:
for i from n1 by -1 to 1 do:
a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b:
od:
if sort(convert(n, base, 10)) = sort(convert(s, base, 10))
then
printf(`%d, `, n):
else
fi:fi:
od:
-
Select[Range[2,140000],If [!PrimeQ[#],Sort@IntegerDigits@#==Sort[Join@@IntegerDigits[First/@FactorInteger[#]]]]&]
A287916
Numbers m such that the decimal digits of m are exactly the same as those of all the indices corresponding to the prime factors of m.
Original entry on oeis.org
12, 14, 123, 154, 2127, 2391, 3614, 4031, 5318, 7174, 8491, 11142, 12435, 12830, 18126, 20314, 23514, 24612, 25201, 28731, 31934, 42158, 50314, 51124, 61411, 62116, 65315, 72401, 73201, 81254, 81372, 92315, 93243, 112924, 123126, 123612, 123861, 124341, 125102
Offset: 1
12435 is in the sequence because the prime factors are {3, 5, 829} with 3 = prime(2), 5 = prime(3) and 829 = prime(145). The decimal digits corresponding to the indices {2, 3, 145} of the prime divisors are the same as the digits of the number 12435.
61411 is in the sequence because the prime factors are {7, 31, 283} with 7 = prime(4), 31 = prime(11) and 283 = prime(61). The decimal digits corresponding to the indices {4, 11, 61} are the same as the digits of the number 61411.
-
with(numtheory):nn:=200000:
for n from 10 to nn do:
x:=convert(n,base,10):n0:=nops(x):U:=array(0..9,[0$10]):
for a from 1 to n0 do:
U[x[a]]:=U[x[a]]+1:
od:
y:=factorset(n):n1:=nops(y):V:=array(0..9,[0$10]):
for i from 1 to n1 do :
p:=y[i]:ii:=0:
for k from 1 to 10000 while(ii=0) do:
if ithprime(k) = p
then
ii:=1:z:=convert(k,base,10):nz:=nops(z):
for b from 1 to nz do:
V[z[b]]:=V[z[b]]+1:
od:
else
fi:
od:
od:
jj:=0:
for b from 0 to 9 do:
if U[b]<>V[b] then jj:=1:
else fi:
od:
if jj=0
then print(n):
else fi:
od:
-
Select[Range[125102], Sort@ IntegerDigits@ # == Sort[Join @@ IntegerDigits[ PrimePi[ First /@ FactorInteger[#]]]] &] (* Giovanni Resta, Jul 11 2017 *)
Showing 1-5 of 5 results.
Comments