cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225515 First differences of A121347.

Original entry on oeis.org

2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Zak Seidov, May 09 2013

Keywords

Comments

Apparently a(n) = 1 or 2. From first 10000 terms, 8597 terms = 2.

Crossrefs

Cf. A121347.

Programs

  • Mathematica
    s={2}; f1=4; f2=2; k=2; Do[f1=f1*n^2; While[f2
    				

Formula

a(n) = A121347(n+2) - A121347(n+1).

A121348 Difference between (n!)^2 and the next smaller factorial.

Original entry on oeis.org

1, 12, 456, 9360, 155520, 21772800, 1146700800, 44503603200, 11860515072000, 1237663494144000, 107797432393728000, 36342886035456000000, 6476053728774389760000, 1089563850990959984640000
Offset: 2

Views

Author

Hugo Pfoertner, Aug 15 2006

Keywords

Examples

			a(3)=12 because the difference between (3!)^2=36 and the next smaller factorial 4!=24 is 12.
		

Crossrefs

Cf. A121347 [Largest number k such that (n!)^2-k!>0].

A122221 Largest number k such that k! < (n!)^n.

Original entry on oeis.org

2, 5, 8, 13, 19, 25, 32, 41, 50, 60, 72, 84, 97, 111, 126, 142, 159, 177, 196, 216, 237, 259, 282, 306, 330, 356, 383, 410, 439, 469, 499, 531, 563, 597, 631, 667, 703, 740, 779, 818, 858, 899, 942, 985, 1029, 1074, 1120, 1167, 1215, 1264, 1314, 1365, 1417
Offset: 2

Views

Author

Hugo Pfoertner, Sep 25 2006

Keywords

Examples

			a(3)=5 because 5! = 120 is less than (3!)^3 = 216 whereas 6! = 720 > 216.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local b: b:=proc(k) if k!<(n!)^n then k else fi end: max(seq(b(k),k=1..2200)) end: seq(a(n),n=2..67); # Emeric Deutsch, Oct 07 2006
  • Mathematica
    s={};Do[k=1;Until[k!>=(n!)^n,k++]; AppendTo[s,k-1],{n,2,54}];s (* James C. McMahon, Oct 26 2024 *)

Formula

From Stirling's approximation, a(n) ~ n^2/2. A closer approximation for a(n) is n^2/2-c*n^2/log(n), where c = (1+log(0.5))/4 = A382854/2. - Johann Peters, Aug 23 2025

Extensions

More terms from Emeric Deutsch, Oct 07 2006
Showing 1-3 of 3 results.