cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121350 Number of conjugacy class of index n subgroups in PSL_2 (ZZ).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 8, 6, 7, 14, 27, 26, 80, 133, 170, 348, 765, 1002, 2176, 4682, 6931, 13740, 31085, 48652, 96682, 217152, 362779, 707590, 1597130, 2789797, 5449439, 12233848, 22245655, 43480188, 97330468, 182619250, 358968639, 800299302, 1542254973, 3051310056, 6783358130
Offset: 0

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of isomorphism class of transitive PSL_2(ZZ) actions on a finite set of size n.
Also the number of different connected trivalent diagrams of size n.
Also the number of (r,s) pair of permutations in S_n, up to simultaneous conjugation, which generate a transitive action and for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

Crossrefs

Connected version of A121352.
Unlabeled version of A121355.
Cf. also A005133, A121356, A121357.

Programs

  • Maple
    with(numtheory,mobius) : mu := k -> `if`( k mod 2 = 0, 2/k, 1/k ) : nu := k -> `if`( k mod 3 = 0, 3/k, 1/k ) : u := (k,n) -> add(mu(k)^(n-2*k2)/(n-2*k2)!/k2!/(2*k)^k2,k2=0..floor(n/ 2)) ; v := (k,n) -> add(nu(k)^(n-3*k3)/(n-3*k3)!/k3!/(3*k)^k3,k3=0..floor(n/ 3)) ; N := 100 # For example. add(convert(taylor(log(add(n!*k^n*u(k,n)*v(k,n)*t^(k*n), n = 0..floor (N/k))),t=0,N+1),polynom),k=1..N) : lZF := sort (%,t, ascending) : add(mobius(k)/k*rem(subs(t=t^k,lZF),t^(N+1),t),k=1..N) : sort (%,t, ascending);
  • Mathematica
    max = 37; mu[k_] := If[Mod[k, 2] == 0, 2/k, 1/k]; nu[k_] := If[Mod[k, 3] == 0, 3/k, 1/k]; u[k_, n_] := Sum[ mu[k]^(n - 2*k2) / (((n - 2*k2)!*k2!)*(2*k)^k2), {k2, 0, Floor[n/2]}]; v[k_, n_] := Sum[ nu[k]^(n - 3*k3) / (((n - 3*k3)!*k3!)*(3*k)^k3), {k3, 0, Floor[n/3]}]; lZF[t_] = Sum[ Normal[ Series[ Log[ Sum[n!*k^n*u[k, n]*v[k, n]*t^(k*n), {n, 0, Floor[max/k]}]], {t, 0, max + 1}]], {k, 1, max}]; Rest[ CoefficientList[ Sum[ (MoebiusMu[k]*PolynomialMod[lZF[t^k], t^(max + 1)])/k, {k, 1, max}], t]] (* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121352 then A(z) = sum_{k > 0} mu(k)/k log(B(z^k)) (Moebius inversion formula).

Extensions

a(0)=1 prepended and a(38) onwards from Andrew Howroyd, Jan 29 2025