A121350 Number of conjugacy class of index n subgroups in PSL_2 (ZZ).
1, 1, 1, 2, 2, 1, 8, 6, 7, 14, 27, 26, 80, 133, 170, 348, 765, 1002, 2176, 4682, 6931, 13740, 31085, 48652, 96682, 217152, 362779, 707590, 1597130, 2789797, 5449439, 12233848, 22245655, 43480188, 97330468, 182619250, 358968639, 800299302, 1542254973, 3051310056, 6783358130
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- S. A. Vidal, Sur la Classification et le Dénombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison (in French), arXiv:0702223 [math.CO], 2006.
- Qiaochu Yuan, Drawing subgroups of the modular group, Annoying Precision, Blog, November 29, 2015.
Crossrefs
Programs
-
Maple
with(numtheory,mobius) : mu := k -> `if`( k mod 2 = 0, 2/k, 1/k ) : nu := k -> `if`( k mod 3 = 0, 3/k, 1/k ) : u := (k,n) -> add(mu(k)^(n-2*k2)/(n-2*k2)!/k2!/(2*k)^k2,k2=0..floor(n/ 2)) ; v := (k,n) -> add(nu(k)^(n-3*k3)/(n-3*k3)!/k3!/(3*k)^k3,k3=0..floor(n/ 3)) ; N := 100 # For example. add(convert(taylor(log(add(n!*k^n*u(k,n)*v(k,n)*t^(k*n), n = 0..floor (N/k))),t=0,N+1),polynom),k=1..N) : lZF := sort (%,t, ascending) : add(mobius(k)/k*rem(subs(t=t^k,lZF),t^(N+1),t),k=1..N) : sort (%,t, ascending);
-
Mathematica
max = 37; mu[k_] := If[Mod[k, 2] == 0, 2/k, 1/k]; nu[k_] := If[Mod[k, 3] == 0, 3/k, 1/k]; u[k_, n_] := Sum[ mu[k]^(n - 2*k2) / (((n - 2*k2)!*k2!)*(2*k)^k2), {k2, 0, Floor[n/2]}]; v[k_, n_] := Sum[ nu[k]^(n - 3*k3) / (((n - 3*k3)!*k3!)*(3*k)^k3), {k3, 0, Floor[n/3]}]; lZF[t_] = Sum[ Normal[ Series[ Log[ Sum[n!*k^n*u[k, n]*v[k, n]*t^(k*n), {n, 0, Floor[max/k]}]], {t, 0, max + 1}]], {k, 1, max}]; Rest[ CoefficientList[ Sum[ (MoebiusMu[k]*PolynomialMod[lZF[t^k], t^(max + 1)])/k, {k, 1, max}], t]] (* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)
Formula
If A(z) = g.f. of a(n) and B(z) = g.f. of A121352 then A(z) = sum_{k > 0} mu(k)/k log(B(z^k)) (Moebius inversion formula).
Extensions
a(0)=1 prepended and a(38) onwards from Andrew Howroyd, Jan 29 2025
Comments