cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121355 Number of transitive PSL_2(ZZ) actions on a finite labeled set of size n.

Original entry on oeis.org

1, 1, 8, 48, 120, 2640, 30240, 201600, 4838400, 96163200, 1037836800, 30496435200, 828193766400, 13686991718400, 450537408921600, 15880397524992000, 356398802952192000, 13410127414075392000, 569542360114151424000, 16614774394239909888000
Offset: 1

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of different connected labeled trivalent diagrams of size n.
Also the number of (r,s) pair of permutations in S_n, which generate a transitive action and for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

Crossrefs

Connected version of A121357.
Labeled version of A121350.
Cf. also A005133, A121352, A121356.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n!,n=1..N),t, ascending);
    # Alternatively:
    A121355_list := proc(len) local s,p; s := f -> seq(n!*coeff(series(f,z,n+1),z,n), n=0..len); p := m -> s(exp(z+z^m/m)); s(log(add((p(2)[n+1]*p(3)[n+1])*z^n/n!, n=0..len))) end: # Peter Luschny, Nov 16 2015
  • Mathematica
    m = 19; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; logexs23 = Series[Log[exs23], {t, 0, m}] // Normal; CoefficientList[logexs23, t]*Range[0, m]! // Rest (* Jean-François Alcover, Sep 06 2013, translated and adapted from Samuel Vidal's Maple program *)
  • PARI
    N=20; x='x+O('x^(N+1));
    A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
    Vec(serlaplace(log(serconvol(A121357_ser, exp(x))))) \\ Gheorghe Coserea, May 10 2017

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121357 then A(z) = log(B(z)).