A121361 Expansion of f(x^1, x^5) * psi(x^2) in powers of x where psi(), f() are Ramanujan theta functions.
1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 2, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 1, 2, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 0, 2, 2, 1, 3, 0, 0, 0, 1, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + x^3 + x^5 + x^6 + 2*x^7 + x^8 + x^10 + x^11 + ... G.f. = q^7 + q^19 + q^31 + q^43 + q^67 + q^79 + 2*q^91 + q^103 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^1, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6] EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Sep 02 2014 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)), n))};
Formula
Expansion of q^(-7/12) * eta(q^2) * eta(q^3) * eta(q^4) * eta(q^12) /
(eta(q) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 1, -2, ...].
2*a(n) = A093829(12*n + 7).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jan 20 2025
Comments