cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121361 Expansion of f(x^1, x^5) * psi(x^2) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 2, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 1, 2, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 0, 2, 2, 1, 3, 0, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 16 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + x^3 + x^5 + x^6 + 2*x^7 + x^8 + x^10 + x^11 + ...
G.f. = q^7 + q^19 + q^31 + q^43 + q^67 + q^79 + 2*q^91 + q^103 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^1, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6] EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Sep 02 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-7/12) * eta(q^2) * eta(q^3) * eta(q^4) * eta(q^12) /
(eta(q) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 1, -2, ...].
2*a(n) = A093829(12*n + 7).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jan 20 2025