A121362 Expansion of eta(q)*eta(q^6)*eta(q^10)*eta(q^15)/(eta(q^3)*eta(q^5)) in powers of q.
1, -1, -1, 1, -1, 1, 0, -1, 1, 1, 0, -1, 0, 0, 1, 1, -2, -1, 2, -1, 0, 0, -2, 1, 1, 0, -1, 0, 0, -1, 2, -1, 0, 2, 0, 1, 0, -2, 0, 1, 0, 0, 0, 0, -1, 2, -2, -1, 1, -1, 2, 0, -2, 1, 0, 0, -2, 0, 0, 1, 2, -2, 0, 1, 0, 0, 0, -2, 2, 0, 0, -1, 0, 0, -1, 2, 0, 0, 2, -1, 1, 0, -2, 0, 2, 0, 0, 0, 0, 1, 0, -2, -2, 2, -2, 1, 0, -1, 0, 1, 0, -2, 0, 0, 0
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A082451(n) = |a(n)|.
Programs
-
Mathematica
eta[q_] := q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]* eta[q^6]*eta[q^10]*eta[q^15]/(eta[q^3]*eta[q^5]), {q, 0, n}]; Table[a[n], {n,1,50}] (* G. C. Greubel, Feb 11 2018 *)
-
PARI
{a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x+A)*eta(x^6+A)*eta(x^10+A)*eta(x^15+A)/(eta(x^3+A)*eta(x^5+A)), n))}
Formula
Euler transform of period 30 sequence [ -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, 0, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -2, ...].
Expansion of q*f(-q)f(-q^15)/(chi(-q^3)chi(-q^5)) in powers of q where f(),chi() are Ramanujan theta functions.
G.f.: x Product_{n>0} (1-x^n)(1+x^(3n))(1+x^(5n))(1-x^(15n)).
a(n) is multiplicative with a(2^e)=a(3^e)=a(5^e)=(-1)^e, a(p^e) = e+1 if p == 1,4 (mod 15), a(p^e) = (-1)^e*(e+1) if p == 2,8 (mod 15), a(p^e) = (1+( -1)^e)/2 if p == 7,11,13,14 (mod 15).
Comments