cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A121418 Column 0 of triangle A121416.

Original entry on oeis.org

1, 2, 7, 43, 403, 5188, 85569, 1725291, 41145705, 1133047596, 35377360292, 1234796503280, 47636225803285, 2012509471127885, 92398547122062997, 4580472438441602301, 243822925502110419105, 13870297863425823346284
Offset: 0

Views

Author

Paul D. Hanna, Aug 22 2006, Jan 19 2008

Keywords

Comments

Also column 1 of square array A136733.
A121416 is the matrix square of triangle A121412; row n of triangle T=A121412 equals row (n-1) of T^(n+1) with an appended '1'.

Crossrefs

Cf. A121416 (triangle); other columns: A121418, A121419.

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i,j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return((A^2)[n+1, 1])}

Extensions

Edited by N. J. A. Sloane, Oct 30 2008 at the suggestion of R. J. Mathar

A121421 Column 0 of triangle A121420.

Original entry on oeis.org

1, 3, 12, 76, 711, 9054, 147471, 2938176, 69328365, 1891371807, 58575539361, 2030011517685, 77827890696820, 3270046577551695, 149407542447596319, 7374639622066056408, 391044078030333899385, 22168014954558449549349
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2006

Keywords

Comments

Also column 2 of square array A136733.
A121420 is the matrix cube of triangle A121412; row n of triangle T=A121412 equals row (n-1) of T^(n+1) with an appended '1'.

Crossrefs

Cf. A121420 (triangle); other columns: A121422, A121423.

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i,j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return((A^3)[n+1, 1])}

Extensions

Edited by N. J. A. Sloane, Oct 30 2008 at the suggestion of R. J. Mathar

A121424 Rectangular table, read by antidiagonals, where row n is equal to column 0 of matrix power A121412^(n+1) for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 18, 1, 4, 12, 43, 170, 1, 5, 18, 76, 403, 2220, 1, 6, 25, 118, 711, 5188, 37149, 1, 7, 33, 170, 1107, 9054, 85569, 758814, 1, 8, 42, 233, 1605, 13986, 147471, 1725291, 18301950, 1, 9, 52, 308, 2220, 20171, 225363, 2938176, 41145705
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2006

Keywords

Examples

			Table of column 0 in matrix powers of triangle H=A121412 begins:
H^1: 1, 1, 3, 18, 170, 2220, 37149, 758814, 18301950,...
H^2: 1, 2, 7, 43, 403, 5188, 85569, 1725291, 41145705,...
H^3: 1, 3, 12, 76, 711, 9054, 147471, 2938176, 69328365,...
H^4: 1, 4, 18, 118, 1107, 13986, 225363, 4441557, 103755660,...
H^5: 1, 5, 25, 170, 1605, 20171, 322075, 6285390, 145453290,...
H^6: 1, 6, 33, 233, 2220, 27816, 440785, 8526057, 195579123,...
H^7: 1, 7, 42, 308, 2968, 37149, 585046, 11226958, 255436293,...
H^8: 1, 8, 52, 396, 3866, 48420, 758814, 14459138, 326487241,...
H^9: 1, 9, 63, 498, 4932, 61902, 966477, 18301950, 410368743,...
Rearrangement of the upper half of the table forms A121430, which is
the number of subpartitions of partition [0,1,1,2,2,2,3,3,3,3,4,...]:
1, 1,2, 3,7,12, 18,43,76,118, 170,403,711,1107,1605, 2220,...
		

Crossrefs

Cf. A121425 (diagonal), A121430; rows: A101483, A121418, A121421; related tables: A121426, A121428; related triangles: A121412, A121416, A121420.

Programs

  • PARI
    {T(n,k)=local(H=Mat(1), B); for(m=1, k+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(H^i)[i-1, j]); )); H=B); return((H^(n+1))[k+1, 1])}

A121430 Number of subpartitions of partition P=[0,1,1,2,2,2,3,3,3,3,4,...] (A003056).

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 18, 43, 76, 118, 170, 403, 711, 1107, 1605, 2220, 5188, 9054, 13986, 20171, 27816, 37149, 85569, 147471, 225363, 322075, 440785, 585046, 758814, 1725291, 2938176, 4441557, 6285390, 8526057, 11226958, 14459138, 18301950
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. is illustrated by:
1 = (1)*(1-x)^1 + (x + 2*x^2)*(1-x)^2 +
(3*x^3 + 7*x^5 + 12*x^6)*(1-x)^3 +
(18*x^6 + 43*x^7 + 76*x^8 + 118*x^9)*(1-x)^4 +
(170*x^10 + 403*x^11 + 711*x^12 + 1107*x^13 + 1605*x^14)*(1-x)^5 + ...
When the sequence is put in the form of a triangle:
1;
1, 2;
3, 7, 12;
18, 43, 76, 118;
170, 403, 711, 1107, 1605;
2220, 5188, 9054, 13986, 20171, 27816;
37149, 85569, 147471, 225363, 322075, 440785, 585046; ...
then the columns of this triangle form column 0 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121424 as follows.
Column 0 of successive powers of matrix H begin:
H^1: [1,1,3,18,170,2220,37149,758814,18301950,...];
H^2: 1, [2,7,43,403,5188,85569,1725291,41145705,...];
H^3: 1,3, [12,76,711,9054,147471,2938176,69328365,...];
H^4: 1,4,18, [118,1107,13986,225363,4441557,103755660,...];
H^5: 1,5,25,170, [1605,20171,322075,6285390,145453290,...];
H^6: 1,6,33,233,2220, [27816,440785,8526057,195579123,...];
H^7: 1,7,42,308,2968,37149, [585046,11226958,255436293,...];
H^8: 1,8,52,396,3866,48420,758814, [14459138,326487241,...];
H^9: 1,9,63,498,4932,61902,966477,18301950, [410368743,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121424, A121425; column 0 of H^n: A121413, A121417, A121421.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+1)+1)\2 ) )); polcoeff(A, n))}

Formula

G.f.: 1 = Sum_{n>=1} (1-x)^n * Sum_{k=n*(n-1)/2..n*(n+1)/2-1} a(k)*x^k.

A136733 Square array, read by antidiagonals, where T(n,k) = T(n,k-1) + T(n-1,k+n) for n>0, k>0, such that T(n,0) = T(n-1,n) for n>0 with T(0,k)=1 for k>=0.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 18, 7, 3, 1, 170, 43, 12, 4, 1, 2220, 403, 76, 18, 5, 1, 37149, 5188, 711, 118, 25, 6, 1, 758814, 85569, 9054, 1107, 170, 33, 7, 1, 18301950, 1725291, 147471, 13986, 1605, 233, 42, 8, 1, 508907970, 41145705, 2938176, 225363, 20171, 2220, 308
Offset: 0

Views

Author

Paul D. Hanna, Jan 19 2008

Keywords

Examples

			Square array begins:
(1), 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...];
(1,2), 3, 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,...;
(3,7,12), 18, 25,33,42,52,63,75,88,102,117,133,150,168,187,207,228,...;
(18,43,76,118), 170, 233,308,396,498,615,748,898,1066,1253,1460,...;
(170,403,711,1107,1605), 2220, 2968,3866,4932,6185,7645,9333,11271,...;
(2220,5188,9054,13986,20171,27816), 37149, 48420,61902,77892,96712,...;
(37149,85569,147471,225363,322075,440785,585046), 758814, 966477,...;
(758814,1725291,2938176,4441557,6285390,8526057,11226958,14459138), ...;
where the rows are generated as follows.
Start row 0 with all 1's; from then on,
remove the first n+1 terms (shown in parenthesis) from row n
and then take partial sums to yield row n+1.
Note the first upper diagonal forms column 0 and equals A101483:
[1,1,3,18,170,2220,37149,758814,18301950,508907970,16023271660,...]
which equals column 2 of triangle A101479:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
191, 70, 18, 4, 1, 1;
2646, 795, 170, 30, 5, 1, 1;
46737, 11961, 2220, 335, 45, 6, 1, 1;
1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; ...
where row n equals row (n-1) of T^(n-1) with appended '1'.
		

Crossrefs

Cf. A101479; columns: A101483, A121418, A121421; A121425 (main diagonal); variants: A136730, A136737.

Programs

  • PARI
    {T(n,k)=if(k<0,0,if(n==0,1,T(n,k-1) + T(n-1,k+n)))}

A132692 Column 1 of triangle A132690.

Original entry on oeis.org

1, 1, -2, 12, -118, 1605, -27816, 585046, -14459138, 410368743, -13146830110, 469123986529, -18447791712945, 792514583941223, -36925394368325295, 1854525584914459755, -99872579714406393286, 5740977285851988017769, -350847888975706702249890
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2007

Keywords

Comments

Appears to be essentially a signed version of A121425. - N. J. A. Sloane, Oct 30 2008
Triangle T=A132690 is generated from negative powers of itself such that row n+1 of T = row n of T^(-n) with appended '1' for n>=0 with T(0,0)=1.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(-(i-2)))[i-1, j]); )); A=B); return( ((A)[n+2,2]))}
Showing 1-6 of 6 results.