A121436 Matrix inverse of triangle A122176, where A122176(n,k) = C( k*(k+1)/2 + n-k + 1, n-k) for n>=k>=0.
1, -2, 1, 3, -3, 1, -7, 9, -5, 1, 26, -37, 25, -8, 1, -141, 210, -155, 60, -12, 1, 1034, -1575, 1215, -516, 126, -17, 1, -9693, 14943, -11806, 5270, -1426, 238, -23, 1, 111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1, -1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1
Offset: 0
Examples
Triangle begins: 1; -2, 1; 3, -3, 1; -7, 9, -5, 1; 26, -37, 25, -8, 1; -141, 210, -155, 60, -12, 1; 1034, -1575, 1215, -516, 126, -17, 1; -9693, 14943, -11806, 5270, -1426, 238, -23, 1; 111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1; -1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1; ...
Links
- Paul D. Hanna, Rows n=0..45, as a table of n, a(n) for n=0..1080.
Programs
-
PARI
/* Matrix Inverse of A122176 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r,r-c)))); return((M^-1)[n+1,k+1])} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
/* Obtain by G.F. */ {T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+2)), n-k)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))